Biological systems employ liquid-liquid phase separation to localize macromolecules and processes. The properties of intracellular condensates that allow for multiple, distinct liquid compartments and the impact of their coexistence on phase composition and solute partitioning are not well understood. Here, we generate two and three coexisting macromolecule-rich liquid compartments by complex coacervation based on ion pairing in mixtures that contain two or three polyanions together with one, two, or three polycations. While in some systems polyelectrolyte order-of-addition was important to achieve coexisting liquid phases, for others it was not, suggesting that the observed multiphase droplet morphologies are energetically favorable. Polyelectrolytes were distributed across all coacervate phases, depending on the relative interactions between them, which in turn impacted partitioning of oligonucleotide and oligopeptide solutes. These results show the ease of generating multiphase coacervates and the ability to tune their partitioning properties via the polyelectrolyte sharing inherent to multiphase complex coacervate systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.9b01354 | DOI Listing |
Int J Biomed Imaging
January 2025
Medical Imaging Sciences Department, College of Health Sciences, Gulf Medical University, Ajman, UAE.
The quality of CT images obtained from hepatocellular carcinoma (HCC) patients is complex, affecting diagnostic accuracy, precision, and radiation dose assessment due to increased exposure risks. The study evaluated image quality qualitatively and quantitatively by comparing quality levels with an effective radiation dose to ensure acceptable quality accuracy. This study retrospectively reviewed 100 known HCC patients (Li-RADS-5) who underwent multidetector computed tomography (MDCT) multiphasic scans for follow-up of their health condition between January and October 2023.
View Article and Find Full Text PDFMicroscopy (Oxf)
January 2025
Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Dar Stal Dariusz Zaława, ul. Przemysłowa 7, 42-300 Myszków, Poland.
In this study, numerical modeling and experimental tests of the sheet metal cutting process were carried out in order to determine the shape of the cutting knives for a roller shear, ensuring the minimization of burr on the cut edge. A rolling mill was used for the tests, enabling the replication of the cutting process in a roller shear (demonstrating the possibility of using cutting rollers). The cutting edges of the sheets were examined using light microscopy and then compared with the results of numerical simulations to determine the cutting quality.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Resources and Environment, Qingdao Agricultural University, Shandong, 266109China Qingdao.
The dose-response relationship between toxicants and organisms is the most fundamental principle in toxicological risk assessment. However, multiphasic non-linear responses are poorly understood and the underlying mechanisms remain elusive. In this study, we subjected the indicator plant Tillandsia usneoides to 5 or 10 time gradients of 1 mM Pb, and assessed the response patterns of five damage markers and eight resistance markers in the leaves.
View Article and Find Full Text PDFSoft Matter
January 2025
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!