Suppression of Polysulfide Dissolution and Shuttling with Glutamate Electrolyte for Lithium Sulfur Batteries.

ACS Nano

National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures , Harbin Institute of Technology, Harbin 150080 , China.

Published: December 2019

The lithium sulfur battery is regarded as a potential next-generation high-energy battery system. However, polysulfides dissolve and shuttle through the electrolytes, causing rapid capacity decay, serious self-discharge, and poor high-temperature performances. Here, we demonstrate that by directly introducing glutamate into commercial electrolytes, these issues can be tackled simultaneously. With abundant negatively charged hydroxyl groups, the glutamate additive electrolyte effectively suppresses the shuttling of negatively charged polysulfide ions through strong repulsive interaction up to 1.54 eV. With glutamate additive electrolyte, the lithium sulfur battery has a capacity retention of 60% after 1000 cycles at 5.95 mA/cm, a self-discharge rate on the order of one-third that of commercial electrolytes, and stable operation at 60 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b06934DOI Listing

Publication Analysis

Top Keywords

lithium sulfur
12
electrolyte lithium
8
sulfur battery
8
commercial electrolytes
8
negatively charged
8
glutamate additive
8
additive electrolyte
8
suppression polysulfide
4
polysulfide dissolution
4
dissolution shuttling
4

Similar Publications

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).

View Article and Find Full Text PDF

Valence Electron: A Descriptor of Spinel Sulfides for Sulfur Reduction Catalysis.

Adv Mater

January 2025

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Catalysts are essential for achieving high-performance lithium-sulfur batteries. The precise design and regulation of catalytic sites to strengthen their efficiency and robustness remains challenging. In this study, spinel sulfides and catalyst design principles through element doping are investigated.

View Article and Find Full Text PDF

Dual functional coordination interactions enable fast polysulfide conversion and robust interphase for high-loading lithium-sulfur batteries.

Mater Horiz

January 2025

National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.

View Article and Find Full Text PDF

Natural hematite-derived NiFeO as a separator modification material for improved Li-S battery performance.

Chem Commun (Camb)

January 2025

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.

The shuttling effect of polysulfides in lithium-sulfur batteries seriously affects their performance. Herein, NiFeO derived from natural hematite is coated on a PP separator (NFO@PP), which can effectively block the shuttling of polysulfides and has strong adsorption and catalytic capabilities. The NFO@PP cell has an initial capacity of up to 1258.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!