Organic electrode materials have attracted great interest for next-generation lithium-ion batteries owing to their merits of low cost, resource sustainability, and environmental friendliness. Dissolution in organic electrolyte is one of critical factors that limit their development, and constructing corresponding polymers is an effective way to prevent it. Herein, the synthesis of benzoquinone- and naphthoquinone-bearing polymers by ring-opening metathesis polymerization of monomers with an exo-type four-membered ring between polymerizable norbornene and redox-active quinone units is reported. They exhibit significantly reduced solubility and clearly enhanced electrochemical performance. In particular, a high capacity (189.7 mAh g at 0.1 C, 1 C=216.1 mA g ), stable cycling (75.6 % capacity retention after 500 cycles at 2 C), and good rate capability (retaining 80.4 % from 0.1 to 2 C) were obtained for the naphthoquinone-bearing polymer, which stand out among naphthoquinone-bearing polymer electrode materials. This work offers rational molecular design and a new polymerization strategy to construct high-performance polymer electrode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201902966 | DOI Listing |
Mikrochim Acta
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
This study theoretically investigates the defect-related electronic structure and transport properties in a device where a semiconductor bilayer SnS (BL-SnS) serves as the central scattering region and bilayer SnS with cobalt atom intercalation (Co-SnS) as the metallic electrodes. The Co-SnS/BL-SnS junction forms an ohmic contact, which is robust to defects. Low contact resistances of 52.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, College of Chemical and Biological Engineering, CHINA.
Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto University - Uji Campus: Kyoto Daigaku - Uji Campus, Institute for Chemical Research, Gokasho, 611-0011, Uji, JAPAN.
The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!