Carotenogenic microalgae are unicellular photosynthetic organisms with the ability to accumulate carotenoids. Carotenoid accumulation is a protective reaction against environmental stress factors, such as bright light and extreme temperatures. It makes the survival of these microorganisms under harsh environmental conditions possible. The diversity of carotenogenic microalgae has been described in detail for Central Europe and North America, as well as for tropical and subtropical latitudes with relatively favorable environments. However, data about these microorganisms in polar and subpolar latitudes are scarce and restricted to few reports. We isolated several strains of carotenogenic microalgae from the coastal zone of the White Sea, where they were abundant. The obtained microalgae related to four species of Chlorophytes: Haematococcus lacustris, H. rubicundus, Coelastrella aeroterrestrica and Bracteacoccus aggregatus. The last three species have been reported for polar latitudes for the first time. Most likely, carotenogenic algae in the White Sea coast are abundant due to their high physiological and metabolic plasticity, which is essential for surviving under adverse conditions of the northern regions. Pigment composition of the strains is provided. Their predominant carotenoids were astaxanthin and β-carotene. Further, the obtained strains may be considered as potential producers of natural pigments for biotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiz183 | DOI Listing |
Plant Physiol Biochem
December 2024
School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. Electronic address:
Natural carotenoids from microalgae have received more attention as an alternative source. In this study, fulvic acid (FA), a plant growth regulator, was used to enhance carotenoid accumulation in microalgae Dunaliella bardawil rich in lutein. However, the addition of FA promoted pigment synthesis but also exhibited an inhibitory effect on biomass.
View Article and Find Full Text PDFPlant Cell Environ
January 2024
Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.
The green microalga Dunaliella salina hyperaccumulates β-carotene in the chloroplast, which turns its cells orange. This does not occur in the sister species Dunaliella tertiolecta. However, the molecular mechanisms of β-carotene hyperaccumulation were still unclear.
View Article and Find Full Text PDFMar Drugs
February 2023
Independent Researcher, Arabkir, 1, Yerevan 0054, Armenia.
Microalgae are the richest source of natural carotenoids, which are valuable pigments with a high share of benefits. Often, carotenoid-producing algae inhabit specific biotopes with unfavorable or even extremal conditions. Such biotopes, including alpine snow fields and hypersaline ponds, are widely distributed in Europe.
View Article and Find Full Text PDFPlants (Basel)
May 2022
Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia.
UV-A is the main ultraviolet component of natural (solar) radiation. Despite it, its effect on phototrophs is studied less than UV-B. Effects of UV-A on photosynthetic apparatus of three carotenoid-producing microalgae were elucidated.
View Article and Find Full Text PDFLuminescence of microalgae cultures is a valuable property for the fast diagnostics of their physiological state; however, it has been rarely used in algaculture practice. In this work, luminescence spectrum characteristics of two-stage batch cultures of the green carotenogenic microalga Haematococcus lacustris (Girod-Chantrans) Rostafinski 1875 (Chlorophyceae, Chlamydomonadales) under conditions of autotrophic and mixotrophic growth were investigated. The dynamics of the heterotrophy indices in cultures at different stages of their development in different growth media was determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!