A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supramolecular Fabrication of Complex 3D Hollow Polymeric Hydrogels with Shape and Function Diversity. | LitMetric

Supramolecular Fabrication of Complex 3D Hollow Polymeric Hydrogels with Shape and Function Diversity.

ACS Appl Mater Interfaces

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China.

Published: December 2019

Inspired by the high importance of hollow structures in nature such as blood vessels and bamboos in matter transportation, properties enhancement, or even survival of living creatures, the creation of hollow materials remains of considerable interest. However, constructing hollow unique living-like soft and wet polymeric hydrogels with desirable structures and functionalities is still a big challenge. Here, we reported a robust and effective strategy to fabricate complex three-dimensional (3D) hollow polymeric hydrogel with designed shape and function diversity on the basis of supramolecular interactions. By placing a Ca included gelatin core into the solution of alginate, hydrogel shell could be formed along with the shape of the gelatin core via coordination between alginate chains and Ca diffused from gelatin. The hollow hydrogel could finally be obtained by dissolving the gelatin core. Various complex 3D hollow structures could be achieved by designing/constructing assembled gelatin core as a building block with adjustable supramolecular metal coordination position and strength. Moreover, hollow hydrogels with function diversity could be developed by introducing functional polymers or nanoparticles into the hydrogel wall. This work has made important progress in developing hollow polymeric hydrogel with desirable structures, shapes, and various functional applications including soft actuators and chemical reaction containers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b17440DOI Listing

Publication Analysis

Top Keywords

gelatin core
16
hollow polymeric
12
function diversity
12
hollow
9
complex hollow
8
polymeric hydrogels
8
shape function
8
hollow structures
8
desirable structures
8
polymeric hydrogel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!