Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In situ electrochemical diagnostics designed to probe ionomer interactions with platinum and carbon were applied to relate ionomer coverage and conformation, gleaned from anion adsorption data, with O transport resistance for low-loaded (0.05 mg cm) platinum-supported Vulcan carbon (Pt/Vu)-based electrodes in a polymer electrolyte fuel cell. Coupling the in situ diagnostic data with ex situ characterization of catalyst inks and electrode structures, the effect of ink composition is explained by both ink-level interactions that dictate the electrode microstructure during fabrication and the resulting local ionomer distribution near catalyst sites. Electrochemical techniques (CO displacement and ac impedance) show that catalyst inks with higher water content increase ionomer (sulfonate) interactions with Pt sites without significantly affecting ionomer coverage on the carbon support. Surprisingly, the higher anion adsorption is shown to have a minor impact on specific activity, while exhibiting a complex relationship with oxygen transport. Ex situ characterization of ionomer suspensions and catalyst/ionomer inks indicates that the lower ionomer coverage can be correlated with the formation of large ionomer aggregates and weaker ionomer/catalyst interactions in low-water content inks. These larger ionomer aggregates resulted in increased local oxygen transport resistance, namely, through the ionomer film, and reduced performance at high current density. In the water-rich inks, the ionomer aggregate size decreases, while stronger ionomer/Pt interactions are observed. The reduced ionomer aggregation improves transport resistance through the ionomer film, while the increased adsorption leads to the emergence of resistance at the ionomer/Pt interface. Overall, the high current density performance is shown to be a nonmonotonic function of ink water content, scaling with the local gas (H, O) transport resistance resulting from pore, thin film, and interfacial phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b17614 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!