Spatial and temporal patterns in stream temperature are primary factors determining species composition, diversity and productivity in stream ecosystems. The availability of spatially and temporally continuous estimates of stream temperature would improve the ability of biologists to fully explore the effects of stream temperature on biota. Most statistical stream temperature modeling techniques are limited in their ability to account for the influence of variables changing across spatial and temporal gradients. We identified and described important interactions between climate and spatial variables that approximate mechanistic controls on spatiotemporal patterns in stream temperature. With identified relationships we formed models to generate reach-scale basin-wide spatially and temporally continuous predictions of daily mean stream temperature in four Columbia River tributaries watersheds of the Pacific Northwest, USA. Models were validated with a testing dataset composed of completely distinct sites and measurements from different years. While some patterns in residuals remained, testing dataset predictions of selected models demonstrated high accuracy and precision (averaged RMSE for each watershed ranged from 0.85-1.54 °C) and was only 17% higher on average than training dataset prediction error. Aggregating daily predictions to monthly predictions of mean stream temperature reduced prediction error by an average of 23%. The accuracy of predictions was largely consistent across diverse climate years, demonstrating the ability of the models to capture the influences of interannual climatic variability and extend predictions to timeframes with limited temperature logger data. Results suggest that the inclusion of a range of interactions between spatial and climatic variables can approximate dynamic mechanistic controls on stream temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857678 | PMC |
http://dx.doi.org/10.7717/peerj.7892 | DOI Listing |
mSystems
December 2024
River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Geography, Central University of Tamil Nadu, School of Earth Sciences, Thiruvarur, Tamil Nadu, India.
Land use and land cover (LULC) changes are crucial in influencing regional climate patterns and environmental dynamics. However, the long-term impacts of these changes on climate variability in the Bilate River Basin remain poorly understood. This study examines the spatiotemporal changes in LULC and their influence on climate variability in the Bilate River Basin, Ethiopia, over the period from 1994 to 2024.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá.
The Enterobacter cloacae complex, a prominent bacterium responsible worldwide for most bloodstream infections in the hospital environment, has shown broad-spectrum antibiotic resistance, including carbapenems. Therefore, bacteriophages have again attracted the attention of the science and medical community as an alternative to control Multidrug resistant bacteria. In this study, water samples from Río Abajo River, in Panama City, Panama, were collected, for phage isolation, purification, characterization and propagation against the E.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstr. 34/36, 14195, Berlin, Germany.
Herein hyperbranched polyethyleneimine (hPEI) cryogels are reported for the selective and reversible adsorption of elemental chlorine. The cryogels are prepared in an aqueous solution by crosslinking with glutaraldehyde at subzero temperatures. The final macroporous composites bearing ammonium chloride groups are obtained after freeze-drying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!