Introduction: Mammography is the gold standard for early breast cancer detection, but shows important limitations. Blood-based approaches on basis of cell-free DNA (cfDNA) provide minimally invasive screening tools to characterize epigenetic alterations of tumor suppressor genes and could serve as a liquid biopsy, complementing mammography.

Methods: Potential biomarkers were identified from The Cancer Genome Atlas (TCGA), using HumanMethylation450-BeadChip data. Promoter methylation status was evaluated quantitatively by pyrosequencing in a serum test cohort ( 103), a serum validation cohort ( 368) and a plasma cohort ( 125).

Results: , and were identified as novel biomarker candidates. was included on basis of our previous work. In the serum test cohort, a panel of and showed 63% sensitivity for DCIS and 51% sensitivity for early invasive tumor (pT1, pN0) detection at 80% specificity. The serum validation cohort revealed 50% sensitivity for DCIS detection on basis of and . Furthermore, an inverse correlation between methylation frequency and cfDNA concentration was uncovered. Therefore, markers were tested in a plasma cohort, achieving a 64% sensitivity for breast cancer detection using , and .

Conclusions: Although liquid biopsy remains challenging, a combination of , , and (SNiPER) provides a promising tool for blood-based breast cancer detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849652PMC
http://dx.doi.org/10.18632/oncotarget.27303DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer detection
16
liquid biopsy
12
early breast
8
serum test
8
test cohort
8
serum validation
8
validation cohort
8
plasma cohort
8
sensitivity dcis
8

Similar Publications

No evidence that breast cancer occurs at higher rates among young Arab women.

East Mediterr Health J

December 2024

Department of Radiology, King Abdulaziz University, Jeddah, Saudi Arabia.

Background: Breast cancer is often thought to occur at a younger age among Arab women based on the mean or median age at diagnosis, or the proportion of women diagnosed with breast cancer at a young age.

Objective: To compare age-specific breast cancer incidence rates among women from selected Arab countries with selected high- and middle-income countries.

Methods: We examined population-based, age-specific, national or regional breast cancer incidence data for 2008-2012 and 2013-2017 from Australia, Brazil, Canada, Germany, Japan, United Kingdom, and United States of America, and compared them with data from Algeria, Bahrain, Jordan, Kuwait, Morocco, Qatar, and Saudi Arabia.

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!