We showed previously that in anaesthetized rats acute noninvasive renal denervation (DNX) induced an increase in arterial blood pressure (MABP), unlike the usual hypotensive effect. Here we aimed to establish the background of such unusual response, especially the role of oxidative stress as suggested by an earlier study. The contribution of oxidative stress was explored by studying the effects on DNX-induced MABP increase of pretreatment with 4-hydroxy-3-methoxyacetophenone (apocynin, APO), a powerful antioxidant and antihypertensive agent, and N(omega)-propyl-L-arginine (L-NPA), a blocker of neuronal nitric oxide synthase (nNOS). In anaesthetized Wistar rats maintained on standard (STD) or high-salt (HS) diet sequential right- and left-side DNX was performed. MABP responses were examined without pretreatment and after APO (20 mg/day on two preceding days) and L-NPA (1 mg/kg/h throughout experiment), given alone or combined. In untreated rats, bilateral DNX increased MABP by 6% on STD and 15% on HS diet (P < 0.01 or less); the difference between MABP responses was highly significant (P = 0.002). In STD rats APO or APO + L-NPA treatment failed to alter post-DNX MABP increases whereas L-NPA alone reversed the response and a significant 7% decrease occurred. In HS rats APO and L-NPA given alone reversed the MABP response and significant decreases of 14% (P = 0.001) and 8% (P = 0.01), were seen. Surprisingly, with L-NPA + APO pretreatment only abolishment (not reversal) of post-DNX pressure increase occurred. The results suggest that both systemic, intrarenal and brain oxidative stress, and excessive nNOS activity, mostly in the brain, determine the unexpected post-DNX pressure increase.

Download full-text PDF

Source
http://dx.doi.org/10.26402/jpp.2019.4.12DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
pressure increase
12
blood pressure
8
renal denervation
8
anaesthetized rats
8
neuronal nitric
8
nitric oxide
8
oxide synthase
8
mabp responses
8
rats apo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!