Cloning and expression analysis of an endo-1,3-β-D-glucosidase from Phytophthora cinnamomi.

Mol Biol Rep

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.

Published: February 2020

Phytophthora is considered one of the most destructive genus for many agricultural plant species worldwide, with a strong environmental and economic impact. Phytophthora cinnamomi is a highly aggressive Phytophthora species associated with the forest decline and responsible for the ink disease in chestnut trees (Castanea sativa Miller), a culture which is extremely important in Europe. This pathogenicity occurs due to the action of several enzymes like the hydrolysis of 1,3-β-glucans at specific sites by the enzyme endo-1,3-β-D-glucosidase. The aim of this work to analyze the heterologous expression in two microorganisms, Escherichia coli and Pichia pastoris, of an endo-1,3-β-D-glucosidase encoded by the gene ENDO1 (AM259651) from P. cinnamomi. Different plasmids were used to clone the gene on each organism and the real-time quantitative polymerase chain reaction was used to determine its level of expression. Homologous expression was also analyzed during growth in different carbon sources (glucose, cellulose, and sawdust) and time-course experiments were used for endo-1,3-β-D-glucosidase production. The highest expression of the endo-1,3-β-D-glucosidase gene occurred in glucose after 8 h of induction. In vivo infection of C. sativa by P. cinnamomi revealed an increase in endo-1,3-β-D-glucosidase expression after 12 h. At 24 h its expression decreased and at 48 h there was again a slight increase in expression, and more experiments in order to further explain this fact are underway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-05185-9DOI Listing

Publication Analysis

Top Keywords

phytophthora cinnamomi
8
expression
7
endo-13-β-d-glucosidase
6
cloning expression
4
expression analysis
4
analysis endo-13-β-d-glucosidase
4
phytophthora
4
endo-13-β-d-glucosidase phytophthora
4
cinnamomi
4
cinnamomi phytophthora
4

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Antioomycete Nanoformulation for Biocontrol of English Walnut Crown and Root Rot Caused by .

Plants (Basel)

January 2025

Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.

In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.

View Article and Find Full Text PDF

Globally, forests are constantly threatened by a plethora of disturbances of natural and anthropogenic origin, such as climate change, forest fires, urbanization, and pollution. Besides the most common stressors, during the last few years, Portuguese forests have been impacted by severe decline phenomena caused by invasive pathogens, many of which belong to the genus . The genus includes a large number of species that are invading forest ecosystems worldwide, chiefly as a consequence of global trade and human activities.

View Article and Find Full Text PDF

We examined the evolutionary history of Phytophthora infestans and its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates of Phytophthora species in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two Mexican Phytophthora species, P.

View Article and Find Full Text PDF

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!