A screen-printed electrode prepared from graphene oxide (GO) has been functionalized with 2-aminoterephthalic acid, followed by the exploitation of this functional material in an electrochemical immunoassay for Escherichia coli (E. coli) by immobilizing the antibody on its surface. The functionalization steps followed a straightforward approach and were proven by various instrumental techniques. The detection of E. coli with antibody immobilized electrodes was performed using electrochemical impedance spectroscopy. The analyses were carried out using the hexacyanoferrate redox couple as the electrochemical probe. The present method has a wide analytical range (from 2.2 × 10 to 2.2 × 10 cfu.mL), a low limit of detection (2 cfu.mL), fast response (4 min), and good stability (up to 2 months). The analytical performance of the biosensor was comparable to the previously reported electrochemical biosensors for E. coli. As such, the approach of functionalization of graphene with 2-aminoterephthalic acid should be useful to allow the development of other similar sensing systems for other environmentally and clinically important analytes. Graphical abstractSchematic representation of the preparation and the function of an amino-functionalized graphene oxide (NH-GO) based impedimetric biosensor for the electrochemical detection of E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-019-3952-1 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.
Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Infectious Disease Epidemiology, Robert Koch Institute (RKI), Berlin, Germany.
Background: Carbapenem-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are among WHO's priority pathogens with antimicrobial resistance (AMR). Studies suggest potential impacts of the COVID-19-pandemic on AMR. We described changes in AMR incidence and epidemiology in Germany during the COVID-19-pandemic.
View Article and Find Full Text PDFCommun Biol
January 2025
Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan.
Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
January 2025
Faculdade de Medicina, Instituto de Educação Médica (IDOMED), Universidade Estácio de Sá, Rio de Janeiro, Brazil; Centro de Informação em Saúde para Viajantes, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:
International travel facilitates the acquisition and carriage of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E). We describe genomes of predominant ESBL-E clones detected before and after travel among subjects departing from Rio de Janeiro, Brazil, during 2015-2021, and genomes publicly available from countries visited by travelers. WGS (Illumina NovaSeq) was performed on 70 ESBL-E isolates from 66 travelers (18 pre- and 52 post-travel).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!