A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forest loss shapes the landscape suitability of Kyasanur Forest disease in the biodiversity hotspots of the Western Ghats, India. | LitMetric

Background: Anthropogenic pressure in biodiversity hotspots is increasingly recognized as a major driver of the spillover and expansion of zoonotic disease. In the Western Ghats region of India, a devastating tick-borne zoonosis, Kyasanur Forest disease (KFD), has been expanding rapidly beyond its endemic range in recent decades. It has been suggested that anthropogenic pressure in the form of land use changes that lead to the loss of native forest may be directly contributing to the expanding range of KFD, but clear evidence has not yet established the association between forest loss and KFD risk.

Methods: The current study sought to investigate the relationship between KFD landscape suitability and both forest loss and mammalian species richness, to inform its epidemiology and infection ecology. A total of 47 outbreaks of KFD between 1 January 2012 and 30 June 2019 were modelled as an inhomogeneous Poisson process.

Results: Both forest loss [relative risk (RR) = 1.83; 95% confidence interval (CI) 1.33-2.51] and mammalian species richness (RR = 1.29; 95% CI 1.16-1.42) were strongly associated with increased risk of KFD and dominated its landscape suitability.

Conclusions: These results provide the first evidence of a clear association between increasing forest loss and risk for KFD. Moreover, the findings also highlight the importance of forest loss in areas of high biodiversity. Therefore, this evidence provides strong support for integrative approaches to public health which incorporate conservation strategies simultaneously protective of humans, animals and the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyz232DOI Listing

Publication Analysis

Top Keywords

forest loss
24
forest
9
landscape suitability
8
kyasanur forest
8
forest disease
8
biodiversity hotspots
8
western ghats
8
anthropogenic pressure
8
mammalian species
8
species richness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!