BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (Pten BRF1) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In Pten BRF1 tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033044 | PMC |
http://dx.doi.org/10.1038/s41388-019-1106-x | DOI Listing |
Prostate Cancer
December 2024
Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan.
Prostate cancer is the most common noncutaneous malignancy among men worldwide, including in Sudan, where it represents a significant public health challenge. CD147, a transmembrane glycoprotein implicated in tumor progression, invasion, and metastasis, has shown potential as a prognostic biomarker in various cancers. This retrospective case-control study aimed to evaluate CD147 expression in prostate adenocarcinoma among Sudanese men and its association with tumor grade.
View Article and Find Full Text PDFJ West Afr Coll Surg
August 2024
Division of Urology, Department of Surgery, College of Health Sciences, University of Abuja, Abuja, Nigeria.
Background: Prostate cancer (PCa) was the most common noncutaneous cancer among Nigerian men in 2020. Despite this high incidence, documented rates may be an underestimation.
Objectives: This study aimed to determine the hospital incidence rate, trends, and characterise the clinicopathologic features, and treatment outcomes of patients with PCa in our institution.
Oncol Res
December 2024
Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.
Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .
Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.
Front Oncol
December 2024
Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China.
Background: Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer.
View Article and Find Full Text PDFBioinform Adv
November 2024
Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku 20500, Finland.
Motivation: NMR-based metabolomics is a field driven by technological advancements, necessitating the use of advanced preprocessing tools. Despite this need, there is a remarkable scarcity of comprehensive and user-friendly preprocessing tools in Python. To bridge this gap, we have developed Protomix-a Python package designed for metabolomics research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!