Focusing on highly specific aspects of the immune response is likely to answer a number of basic questions, and in some cases even resolve basic contradictions, in cancer immunology. For example, there are many cases, where chronic inflammation is associated with cancer development, and many other cases where an immune response represents an anticancer process. In this study, using bioinformatics algorithms, we examined the chemical relationships between the amino acid sequences of the complementarity-determining region-3 (CDR3) represented by immune receptors associated with lower grade glioma and isocitrate dehydrogenase-1 (IDH1) mutants. In particular, we developed a chemical complementarity scoring approach to classify tumors based on the complementarity of CDR3s and mutant IDH1 amino acids, relying on net charge per residue and hydropathy parameters. There was a strong correlation between the increased survival in low-grade glioma (LGG) and complementarity of IDH1 mutants to the CDR3 domain of the T-cell receptor beta chain (TRB). Similar results were obtained for TRB CDR3s and NRAS mutants in melanoma. Furthermore, the clear connection between increased survival rates and immune receptor-IDH1 mutant complementarities may also, partially, explain the better LGG prognosis for patients with IDH1 mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-019-1101-2 | DOI Listing |
J Surg Oncol
January 2025
Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA.
Background: Biliary tract cancers (BTCs) represent distinct biological and genomic entities. Anatomic and geographic heterogeneity in genomic profiling of BTC subtypes, genomic co-alterations, and their impact on long-term outcomes are not well defined.
Methods: Genomic data to characterize alterations among patients with BTCs were derived from the AACR GENIE registry (v15.
Ther Clin Risk Manag
January 2025
Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
Background: The relationship between molecular phenotype and prognosis in high-grade gliomas (WHO III and IV, HGG) treated with radiotherapy and chemotherapy is not fully understood and needs further exploration.
Methods: The HGG patients following surgery and treatment with radiotherapy and chemotherapy. Univariate and multivariate Cox analyses were used to assess the independent prognostic factors.
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, The People's Republic of China.
RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!