A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metatranscriptomic Analysis of Multiple Environmental Stresses Identifies RAP2.4 Gene Associated with Arabidopsis Immunity to Botrytis cinerea. | LitMetric

In this study, we aimed to identify common genetic components during stress response responsible for crosstalk among stresses, and to determine the role of differentially expressed genes in Arabidopsis-Botrytis cinerea interaction. Of 1,554 B. cinerea up-regulated genes, 24%, 1.4% and 14% were induced by biotic, abiotic and hormonal treatments, respectively. About 18%, 2.5% and 22% of B. cinerea down-regulated genes were also repressed by the same stress groups. Our transcriptomic analysis indicates that plant responses to all tested stresses can be mediated by commonly regulated genes; and protein-protein interaction network confirms the cross-interaction between proteins regulated by these genes. Upon challenges to individual or multiple stress(es), accumulation of signaling molecules (e.g. hormones) plays a major role in the activation of downstream defense responses. In silico gene analyses enabled us to assess the involvement of RAP2.4 (related to AP2.4) in plant immunity. Arabidopsis RAP2.4 was repressed by B. cinerea, and its mutants enhanced resistance to the same pathogen. To the best of our knowledge, this is the first report demonstrating the role of RAP2.4 in plant defense against B. cinerea. This research can provide a basis for breeding programs to increase tolerance and improve yield performance in crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861241PMC
http://dx.doi.org/10.1038/s41598-019-53694-1DOI Listing

Publication Analysis

Top Keywords

regulated genes
8
cinerea
6
genes
5
metatranscriptomic analysis
4
analysis multiple
4
multiple environmental
4
stresses
4
environmental stresses
4
stresses identifies
4
rap24
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!