The green microalga Botryococcus braunii produces hydrocarbon oils at 25-75% of its dry weight and is a promising source of biofuel feedstock. Few studies have examined this species' ecology in natural habitats, and few wild genetic resources have been collected due to difficulties caused by its low abundance in nature. This study aimed to develop a real-time PCR assay for specific detection and quantification of this alga in natural environments and to quantify spatiotemporal variations of wild B. braunii populations in a tropical pond. We designed PCR primers toward the hydrocarbon biosynthesis gene SSL-3 and examined amplification specificity and PCR efficiency with 70 wild strains newly isolated from various environments. The results demonstrated that this PCR assay specifically amplified B. braunii DNA, especially that of B-race strains, and can be widely used to detect wild B. braunii strains in temperate and tropical habitats. Field-testing in a tropical pond suggested a diurnal change in the abundance of B. braunii in surface water and found B. braunii not only in surface water, but also at 1-1.5 m deep and in bottom sediments. This method can contribute to efficient genetic resource exploitations and may also help elucidate the unknown ecology of B. braunii.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861321 | PMC |
http://dx.doi.org/10.1038/s41598-019-53619-y | DOI Listing |
Sci Total Environ
January 2025
Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India. Electronic address:
The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
November 2024
Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China.
Oleaginous green microalgae are often mentioned in algae-based biodiesel industry, but most of them belong to specific genus (Chlorella, Scenedesmus, Botryococcus and Desmodesmus). Thus, the microalgal germplasm resources for biodiesel production are limited. Mutagenesis is regarded as an important technology for expanding germplasm resources.
View Article and Find Full Text PDFSci Rep
October 2024
Program in Fisheries Science, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
This study investigated the effects of gamma (Cs, 0-250 Gy) and UV (UV-C, 0-12 h) radiation on growth and biodiesel properties of Botryococcus braunii KMITL. For gamma radiation, maximum biomass (1.37 ± 0.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America.
The colonial green microalga Botryococcus braunii is well known for producing liquid hydrocarbons that can be utilized as biofuel feedstocks. B. braunii is taxonomically classified as a single species made up of three chemical races, A, B, and L, that are mainly distinguished by the hydrocarbons produced.
View Article and Find Full Text PDFPLoS One
July 2024
Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
The development of high molecular weight (HMW) genomic DNA (gDNA) extraction protocols for non-model species is essential to fully exploit long-read sequencing technologies in order to generate genome assemblies that can help answer complex questions about these organisms. Obtaining enough high-quality HMW gDNA can be challenging for these species, especially for tissues rich in polysaccharides such as biomass from species within the Botryococcus genus. The existing protocols based on column-based DNA extraction and biochemical lysis kits can be inefficient and may not be useful due to variations in biomass polysaccharide content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!