Releasing patients from the fixation task, and permitting them to view natural stimuli such as movies, would provide increased comfort, and potentially additional signs of retinal function, when recording multifocal electroretinograms (mfERGs). Techniques must be developed to handle the difficulties that arise from these alternative stimulation strategies. Multifocal stimuli were presented to volunteer human subjects with and without fixation. Retinocentric analyses were performed to deal with shifts of the stimulus across the retina in the presence of eye movements. Artificial scotomas that moved with the eyes to simulate local retinal defects were presented to assess whether such defects might be detectable in the presence of eye movements. Temporal and spatial correlations in the stimulus can be discounted, permitting retinal kernels to be measured in response to natural stimuli. Responses to temporally natural stimuli tend to have slightly stronger amplitudes because of the presence of low temporal frequencies in these stimuli. The effects of eye movement artifacts can be reduced, permitting similar kernels to be obtained in the absence and presence of eye movements. Convergence to stable kernels took slightly longer in the presence of temporal correlations or eye movements. Artificial scotomas can be localized with these methods. It may be possible to perform multifocal ERG recordings in the clinic using more flexible, natural techniques. However, work is needed to achieve results comparable to those routinely obtained with conventional methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849053 | PMC |
http://dx.doi.org/10.3390/vision1010003 | DOI Listing |
eNeuro
January 2025
Research Group for Brain and Cognitive Science, Shahid Beheshti Medical University, Tehran, Iran.
Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States of America.
Complex systems, such as in brains, markets, and societies, exhibit internal dynamics influenced by external factors. Disentangling delayed external effects from internal dynamics within these systems is often difficult. We propose using a Vector Autoregressive model with eXogenous input (VARX) to capture delayed interactions between internal and external variables.
View Article and Find Full Text PDFPsychol Rev
January 2025
Department of Psychological and Brain Sciences, Dartmouth College.
Our premodern ancestors had perceptual, motoric, and cognitive functional domains that were modularly encapsulated. Some of these came to interact through a new type of cross-modular binding in our species. This allowed previously domain-dedicated, encapsulated motoric and sensory operators to operate on operands for which they had not evolved.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
Faculty of Science & Technology, Department of Psychology, Bournemouth University.
Computational models of eye movement control during reading have revolutionized the study of visual, perceptual, and linguistic processes underlying reading. However, these models can only simulate and test predictions about the reading of single lines of text. Here we report two studies that examined how input variables for lexical processing (frequency and predictability) in these models influence the processing of line-final words.
View Article and Find Full Text PDFJ Vis
January 2025
Neuroscience Program, University of Western Ontario, London, Ontario, Canada.
Human performance in perceptual and visuomotor tasks is enhanced when stimulus motion follows the laws of gravitational physics, including acceleration consistent with Earth's gravity, g. Here we used a manual interception task in virtual reality to investigate the effects of trajectory shape and orientation on interception timing and accuracy. Participants punched to intercept a ball moving along one of four trajectories that varied in shape (parabola or tent) and orientation (upright or inverted).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!