Smaller visual arrays are harder to integrate in schizophrenia: Evidence for impaired lateral connections in early vision.

Psychiatry Res

Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA; Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, USA.

Published: December 2019

Long-range horizontal connections in early vision undergird a well-studied "collinear facilitation" effect, wherein a central low-contrast target becomes more detectable when flanked by collinear elements. Collinear facilitation is weaker in schizophrenia. Might lateral connections be responsible? To consider the possibility, we had 38 schizophrenia patients and 49 well-matched healthy controls judge the presence of a central low-contrast element flanked by collinear or orthogonal high-contrast elements.   The display (target+flankers) was scaled in size to produce a lower and higher spatial frequency ("SF") condition (4 and 10 cycles/deg, respectively).  Larger stimulus arrays bias processing towards feedback connections from higher-order visual areas; smaller arrays bias processing toward lateral connections. Patients had impaired facilitation relative to controls at higher but not lower SFs. Combining data from a past study on "contour integration" (in which subjects sought to detect chains of co-circular elements), we found correlated integration and facilitation performance at the higher SF and a similar effect of spatial scaling across SF, suggesting a common mechanism. In an exploratory analysis, worse contrast thresholds (without facilitation) correlated strongly with more premorbid dysfunction. In schizophrenia, inter-element filling-in worsens at smaller spatial scales potentially because of its increased reliance on impaired lateral connections in early vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750297PMC
http://dx.doi.org/10.1016/j.psychres.2019.112636DOI Listing

Publication Analysis

Top Keywords

lateral connections
16
connections early
12
early vision
12
impaired lateral
8
central low-contrast
8
flanked collinear
8
higher spatial
8
arrays bias
8
bias processing
8
connections
6

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Taipei Medical University, Taipei, Taiwan.

Understanding the physiological connection between platelets and brain function reveals new paradigms in neurodegenerative disease treatment. Platelets, traditionally associated with hemostasis, but also sometimes regarded as a mirror of neurons in the blood circulation, also encompass a spectrum of neurobiological roles, including neuroinflammation modulation, neurogenesis, and synaptic remodeling. These roles are primarily mediated through a rich array of bioactive molecules and extracellular vesicles (EVs), capable of traversing the blood-brain barrier.

View Article and Find Full Text PDF

Inter- and intra-hemispheric lateralization alterations in auditory verbal hallucinations of Schizophrenia: insights from resting-state functional connectivity.

Eur Arch Psychiatry Clin Neurosci

January 2025

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.

Auditory verbal hallucinations (AVHs) in schizophrenia are hypothesized to involve alterations in hemispheric lateralization, but the specific neural mechanisms remain unclear. This study investigated functional intra- and inter-hemispheric connectivity to identify lateralization patterns unique to AVHs. Resting-state fMRI data were collected from 60 schizophrenia patients with persistent AVHs (p-AVH group), 39 patients without AVHs (n-AVH group), and 59 healthy controls (HC group).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Cell Biology and Pathology, New York, NY, USA.

Background: Possession of the APOE4 allele is the strongest genetic risk factor for developing the sporadic form of Alzheimer's disease (AD). Studies investigating APOE4's associated AD risk have largely centered on APOE4's propensity to regulate the deposition of extracellular amyloid beta plaques. More recent attempts to characterize APOE4's role in AD have brought into question the role APOE4 may possess in modulating the pathogenesis of intracellular tau tangles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!