Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aragonite saturation state (Ω) was determined to assess its seasonal variations and the major controlling factors in the southeastern Yellow Sea (YS) over four seasons. Ω showed large seasonal variation in the surface waters, with dissolved inorganic carbon (DIC) as a major factor controlling the seasonal variation. In the bottom waters, Ω exhibited only small seasonal variation compared with the surface waters; DIC and total alkalinity were the main factors contributing to the variation. The bottom water of the southeastern YS was undersaturated with aragonite during the fall, even though the southeastern YS was not typically associated with upwelling, freshwater discharge, or eutrophication processes. Aragonite undersaturation was most likely due to ocean dumping of organic materials. Therefore, ocean pumping should be prohibited in shallow marginal seas to prevent aragonite undersaturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2019.110695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!