Dentin Matrix Protein 1 Compensates for Lack of Osteopontin in Regulating Odontoblastlike Cell Differentiation after Tooth Injury in Mice.

J Endod

Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. Electronic address:

Published: January 2020

Introduction: Although dentin matrix protein 1 (DMP1) and osteopontin (OPN) act as substrates and signaling molecules for odontoblastlike cell differentiation after tooth injury, the mutual interaction between these proteins in the mechanism of odontoblastlike cell differentiation remains to be clarified. This study aimed to elucidate the role of DMP1 and OPN in regulating odontoblastlike cell differentiation after tooth injury.

Methods: A groove-shaped cavity was prepared on the mesial surface of the upper first molars in wild-type and Opn knockout (KO) mice. The demineralized paraffin sections were processed for immunohistochemistry for nestin and DMP1 and in situ hybridization for Dmp1. For the in vitro assay, the experiments of organ culture for evaluating dentin-pulp complex regeneration using small interfering RNA treatment were performed.

Results: Once preexisting odontoblasts died, nestin-positive newly differentiated odontoblastlike cells were arranged along the pulp-dentin border and began to express DMP1/Dmp1. In Opn KO mice, the expression of DMP1/Dmp1 was up-regulated compared with that of wild-type mice. The in vitro assay showed that the gene suppression of Dmp1 by small interfering RNA showed a tendency to decrease the differentiation rate of odontoblastlike cells from 70.1% to 52.2% in wild-type teeth. In addition, the suppression of Dmp1 in Opn KO teeth tended to lead to the inhibition of odontoblastlike cell differentiation.

Conclusions: These results suggest that the expression of Dmp1 is up-regulated in Opn KO mice both in vivo and in vitro, and DMP1 compensates for the lack of OPN in regulating odontoblastlike cell differentiation after tooth injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2019.10.002DOI Listing

Publication Analysis

Top Keywords

odontoblastlike cell
24
cell differentiation
20
differentiation tooth
16
regulating odontoblastlike
12
tooth injury
12
dentin matrix
8
matrix protein
8
compensates lack
8
odontoblastlike
8
dmp1
8

Similar Publications

Diabetes mellitus (DM) induced mitochondrial oxidative stress (OS) can lead to severe injury of dental pulp. The cerium oxide nanoparticles (CNP) have been proven to have excellent antioxidative activity. However, whether CNP can relieve dental pulp damage caused by DM and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Objectives: Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear.

View Article and Find Full Text PDF

Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.

View Article and Find Full Text PDF

Resin monomers induce apoptosis of the pulp-dentin complex through the mitochondrial pathway.

J Toxicol Sci

December 2024

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China.

Numerous studies have confirmed that the apoptosis induced by the methacrylate resin monomers triethyleneglycol-dimethacrylate (TEGDMA), 2-hydroxy ethyl methacrylate (HEMA), etc., in pulp cells and odontoblast-like cells is caused mainly by oxidative stress (OS). Reactive oxygen species (ROS), recognized as the most important risk factor for apoptosis in cells of the pulp-dentin complex, are produced mainly via the mitochondrial respiratory chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!