Background: E-cigarette (EC) use is increasing exponentially worldwide. The early cardiovascular effects of switching from tobacco cigarettes (TC) to EC in chronic smokers is unknown. Meta-analysis of flow-mediated dilation (FMD) studies indicate 13% lower pooled, adjusted relative risks of cardiovascular events with every 1% improvement in FMD.
Objectives: This study sought to determine the early vascular impact of switching from TC to EC in chronic smokers.
Methods: The authors conducted a prospective, randomized control trial with a parallel nonrandomized preference cohort and blinded endpoint of smokers ≥18 years of age who had smoked ≥15 cigarettes/day for ≥2 years and were free from established cardiovascular disease. Participants were randomized to EC with nicotine or EC without nicotine for 1 month. Those unwilling to quit continued with TC in a parallel preference arm. A propensity score analysis was done to adjust for differences between the randomized and preference arms. Vascular function was assessed by FMD and pulse wave velocity. Compliance with EC was measured by carbon monoxide levels.
Results: Within 1 month of switching from TC to EC, there was a significant improvement in endothelial function (linear trend β = 0.73%; 95% confidence interval [CI]: 0.41 to 1.05; p < 0.0001; TC vs. EC combined: 1.49%; 95% CI: 0.93 to 2.04; p < 0.0001) and vascular stiffness (-0.529 m/s; 95% CI: -0.946 to -0.112; p = 0.014). Females benefited from switching more than males did in every between-group comparison. Those who complied best with EC switch demonstrated the largest improvement. There was no difference in vascular effects between EC with and without nicotine within the study timeframe.
Conclusions: TC smokers, particularly females, demonstrate significant improvement in vascular health within 1 month of switching from TC to EC. Switching from TC to EC may be considered a harms reduction measure. (Vascular Effects of Regular Cigarettes Versus Electronic Cigarette Use [VESUVIUS]; NCT02878421; ISRCTN59133298).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928567 | PMC |
http://dx.doi.org/10.1016/j.jacc.2019.09.067 | DOI Listing |
Curr Med Chem
January 2025
Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
Sedentary lifestyles and prolonged physical inactivity are often linked to poor mental and physical health as well as an increased risk of a number of chronic illnesses, including cancer, obesity, type 2 diabetes, and cardiovascular problems. Metabolic Syndrome (MetS), as the new disease, has emerged as the world's leading cause of illness. Despite having its roots in the West, this issue has now completely globalized due to the development of the Western way of life throughout the world.
View Article and Find Full Text PDFCurr Drug Discov Technol
December 2024
Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, 603203, India.
Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.
View Article and Find Full Text PDFHypertension
January 2025
Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).
Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.
Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.
Arterioscler Thromb Vasc Biol
January 2025
Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!