Deoxynivalenol, T-2 toxin, and zearalenone, major mycotoxins, contaminate human food on a global level. Exposure to these mycotoxins during pregnancy can lead to abnormalities in neonatal development. Therefore, the aim of this study was to investigate the effects of mycotoxins on human placental epithelial cells. As an in vitro model of placental barrier, BeWo cells were exposed to different concentrations of deoxynivalenol, zearalenone or T-2 toxin. Cytotoxicity, effects on barrier integrity, paracellular permeability along with mRNA and protein expression and localization of junctional proteins after exposure were evaluated. Induction of proinflammatory responses was determined by measuring cytokine production. Increasing mycotoxin concentrations affect BeWo cell viability, and T-2 toxin was more toxic compared to other mycotoxins. Deoxynivalenol and T-2 toxin caused significant barrier disruption, altered protein and mRNA expression of junctional proteins, and induced irregular cellular distribution. Although the effects of zearalenone on barrier integrity were less prominent, all tested mycotoxins were able to induce inflammation as measured by IL-6 release. Overall, mycotoxins disrupt the barrier of BeWo cells by altering the expression and structure of junctional proteins and trigger proinflammatory responses. These changes in placental barrier may disturb the maternal-fetal interaction and adversely affect fetal development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891427 | PMC |
http://dx.doi.org/10.3390/toxins11110665 | DOI Listing |
Arch Razi Inst
June 2024
Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
Mycotoxins are toxins produced by various types of fungi, including , which can produce different types of mycotoxins, such as Deoxynivalenol (DON), Zearalenone, T-2 toxin, and Fumonisins (FUM). Mycotoxins have the potential to reduce the quality of crops and pose health risks to both humans and animals. This can result in reduced animal production and substantial economic consequences on a global scale.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary.
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Faculty of Veterinary Medicine, Ss. Cyril & Methodius University in Skopje, 1000 Skopje, North Macedonia.
The kidney plays an essential role in the proper homeostasis of glucose. In the kidney, glucose transport is carried out across cell membranes by two families of glucose transporters-facilitated diffusion glucose transporters (GLUTs) and Na(+)-dependent glucose co-transporters (SGLT family). Among the transporters, sodium-dependent glucose co-transporters play a major role in the kidney's ability to reabsorb glucose.
View Article and Find Full Text PDFMycotoxin Res
December 2024
Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China. Electronic address:
T-2 toxin can induce bone and cartilage development disorder, and oxidative stress plays an important role in it. It is well known that selenomethionine (Se-Met) has antioxidative stress properties and promotes the repair of cartilage lesion, but it remains unclear whether Se-Met can relieve damaged cartilage exposure to T-2 toxin. Here, the oxidative stress and ferroptosis of chondrocytes exposure to T-2 toxin were observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!