Thermal Textile Pixels: The Characterisation of Temporal and Spatial Thermal Development.

Materials (Basel)

Swedish School of Textiles, Polymeric E-Textiles Research Group, University of Borås, 501 90 Borås, Sweden.

Published: November 2019

This study introduces the concept of a thermal textile pixel, a spatially and temporally defined textile structure that shows spatial and temporal thermal contrast and can be used in the context of thermal communication. A study was performed investigating (a) in-plane and (b) out-of-plane thermal signal behaviour for knitted structures made of three different fibre types; namely, polyamide, wool, and metal containing Shieldex yarn, and two different knitting structures: plain knit and terry knit. The model thermal source was a Peltier element. For (a), a thermography set-up was used to monitor the spatial development of thermal contrast, and for (b), an arrangement with thermocouple measuring temperature development over time. Results show that the use of conductive materials such as Shieldex is unnecessary for the plain knit if only heating is required, whereas such use significantly improves performance for the terry knit structures. The findings demonstrate that the textile pixel is able to spatially and temporally focus thermal signals, thereby making it viable for use as an interface for thermal communication devices. Having well-defined thermal textile pixels opens up potential for the development of matrices for more complex information conveyance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888374PMC
http://dx.doi.org/10.3390/ma12223747DOI Listing

Publication Analysis

Top Keywords

thermal textile
12
thermal
11
textile pixels
8
textile pixel
8
pixel spatially
8
spatially temporally
8
thermal contrast
8
thermal communication
8
plain knit
8
terry knit
8

Similar Publications

This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.

View Article and Find Full Text PDF

Investigating the impact of textile structure reinforcement on the mechanical characteristics of polymer composites produced by the compression molding technique was the goal of this work. An epoxy resin system served as the matrix, and various woven (plain, twill, basket), nonwoven (mat), and unidirectional (UD) textile structures made from E-glass fibers were employed as reinforcement elements. Compression molding of pre-impregnated textile materials (prepregs) was used to create the composites.

View Article and Find Full Text PDF

Eco-Friendly Fire-Retardant Coating on Cotton Using Layer by Layer Deposition Technique.

Molecules

December 2024

College of Mechatronic Engineering, Changwon National University, Changwon 51140, Gyeongsangnam-do, Republic of Korea.

Fire hazards are an increasing concern in several high-tech industries of public importance, particularly where textile fabrics are used in abundance. In this study, a novel layer by layer deposition method was utilized to develop a fire-retardant coating on cotton fabric. The method involves a hybrid cationic solution consisting of chitosan and branched polyethyleneimine, while bentonite clay was used as the anionic species.

View Article and Find Full Text PDF

Nondestructive Monitoring of Textile-Reinforced Cementitious Composites Subjected to Freeze-Thaw Cycles.

Materials (Basel)

December 2024

Department of Mechanics of Materials and Constructions, Faculty of Engineering, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.

Cementitious materials are susceptible to damage not only from mechanical loading, but also from environmental (physical, chemical, and biological) factors. For Textile-Reinforced Cementitious (TRC) composites, durability poses a significant challenge, and a reliable method to assess long-term performance is still lacking. Among various durability attacks, freeze-thaw can induce internal cracking within the cementitious matrix, and weaken the textile-matrix bond.

View Article and Find Full Text PDF

Background: Ticks (Acari: Ixodida) pose a serious medical and veterinary threat as vectors of tick-borne pathogens. The wide variety of tick repellents available on the market primarily consist of synthetic preparations that may disrupt the ecological balance and accumulate in the environment, leading to harmful effects on humans and animals. The aim of the study was to develop an ecological preparation based on natural raw materials (biopolymers) with the addition of a mixture of essential oils that act as tick repellents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!