Image-based brain maps, generally coined as 'intensity or image atlases', have led the field of brain mapping in health and disease for decades, while investigating a wide spectrum of neurological disorders. Estimating representative brain atlases constitute a fundamental step in several MRI-based neurological disorder mapping, diagnosis, and prognosis. However, these are strikingly lacking in the field of brain connectomics, where connectional brain atlases derived from functional MRI (fRMI) or diffusion MRI (dMRI) are almost absent. On the other hand, conventional connectomic-based classification methods traditionally resort to feature selection methods to decrease the high-dimensionality of connectomic data for learning how to diagnose new patients. However, these are generally limited by high computational cost and a large variability in performance across different datasets, which might hinder the identification of reproducible biomarkers. To address both limitations, we unprecedentedly propose a brain network atlas-guided feature selection (NAG-FS) method to disentangle the healthy from the disordered connectome. To this aim, given a population of brain connectomes, we propose to learn how estimate a centered and representative functional brain network atlas (i.e., a population center) to reliably map the functional connectome and its variability across training individuals, thereby capturing their shared traits (i.e., connectional fingerprint of a population). Essentially, we first learn the pairwise similarities between connectomes in the population to map them into different subspaces. Next, we non-linearly diffuse and fuse connectomes living in each subspace, respectively. By integrating the produced subspace-specific network atlases we ultimately estimate the population network atlas. Last, we compute the difference between healthy and disordered network atlases to identify the most discriminative features, which are then used to train a predictive learner. Our method boosted the classification performance by 6% in comparison to state-of-the-art FS methods when classifying autistic and healthy subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2019.101596 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Acta Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!