A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar. | LitMetric

Arsenic (As) presence in surface reservoirs and groundwater is considered as an extremely alarming issue around the globe. The objectives of the present study were to evaluate the sorption potential of almond shell (ALS) and almond shell biochar (ASB) based sorbents for the removal of As(III)/As(V) from As-contaminated aqueous solutions. The maximum As(III) sorption capacity of ALS and ASB were 4.6 and 4.86 mg g, respectively at an initial As concentration of 5 mg L, pH ∼ 7.2 and sorbent dose of 0.6 g L. Similarly, in case of As(V) the maximum sorption capacities were reported as 3.45 and 3.6 mg g by ALS and ASB respectively. Almond shell biochar removed 10-25% higher As(III)/As(V) compared to the ALS. The isotherm modeling results revealed that both for As(III) and As(V), Langmuir model presented the suitable fit to the equilibrium data compared to other model showing the monolayer sorption to be a dominant sorption mechanism. The FTIR and XPS spectroscopy revealed that mostly -OH functional groups along with some other aromatic and/or aliphatic carbon- and oxygen-rich groups (CC-C, -C-H, CO) were responsible for As sorption by both sorbents. It is concluded that ASB can remove As, notably As(III) from water more efficiently compared to natural ALS. Overall, the results of this research reveal that biochar conversion of ALS can enhance the sorption capacity for As in contaminated waters such as drinking water and wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.125330DOI Listing

Publication Analysis

Top Keywords

almond shell
16
shell biochar
12
asiii asv
8
aqueous solutions
8
sorption capacity
8
als asb
8
sorption
7
als
6
high sorption
4
sorption efficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!