Management of bacterial survival post chlorine disinfection is vital for safe wastewater reuse for irrigation, as the presence of microorganisms in large numbers may lead to subsequent contamination of the surface and ground water reservoirs. Even after satisfying the current norms of coliform counts after disinfection (less than 1000 MPN per 100 mL), chlorine tolerant bacteria surviving in inadequately treated wastewater may pose a public health threat as many of these bacteria are able to re-grow upon storage. The current study is aimed to assess the magnitude of the problem posed by chlorine tolerant bacteria during chlorine disinfection and attempts to derive a strategy for safe disinfection. The chlorine tolerance was examined in the dominant gram negative bacteria (GNB) recovered from secondary treated sewage from a treatment plant located at Jaipur, India. Bacterial survival and re-growth (after 24 h) studies on test species (n = 11) with reference to E.coli ATCC 25922 reveal that, while the lethal doses of isolates ranged from 0.5 to 1.25 mgL,the chlorine doses for complete inhibition of re-growth were much higher (0.75-1.75 mgL).The isolates showing highest lethal dose and re-growth inhibition dose, identified as Citrobacter freundii, Klebsiella sp. and Stenotrophomonas maltophilia also exhibited very low log effective reduction (0.72-1.90) values and were selected as chlorine tolerant bacteria. Results of inactivation kinetics experiments on chlorine tolerant bacteria reveal a strong correlation (R > 0.89-0.99) between log reduction values and contact time. In re-growth kinetics experiments, maximum re-growth was observed after 6 h exposure following which, only marginal increase was registered up to 24 h. The study indicates that the existing approach of bacterial elimination post chlorine treatment may be grossly inadequate to assess the performance of the disinfection process adopted for drinking water treatment. It further brings out a novel approach to arrive at meaningful chlorine doses that take bacterial re-growth into account for achieving safe disinfection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.109827DOI Listing

Publication Analysis

Top Keywords

chlorine tolerant
16
tolerant bacteria
16
chlorine
10
chlorine tolerance
8
dominant gram
8
gram negative
8
negative bacteria
8
recovered secondary
8
secondary treated
8
treated wastewater
8

Similar Publications

A variety of dearomatized compounds have been prepared in moderate to excellent yields from planar scaffolds using trichloroisocyanuric acid (TCCA) as an atom-economical chlorinating agent. The method tolerates a broad range of functionalities and can take place in several green and/or sustainable solvents. Twenty-one examples of 1,1-dichlorinated products of dearomatized 2-naphthols and analogous heteroarenes (quinolinols, isoquinolinols, and quinazolinol) are reported along with five examples of monochlorinated dearomatized products.

View Article and Find Full Text PDF

Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study.

Eur J Med Chem

February 2025

Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic. Electronic address:

Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family.

View Article and Find Full Text PDF

Emergent Escherichia coli of the highly virulent B2-ST1193 clone producing KPC-2 carbapenemase in ready-to-eat vegetables.

J Glob Antimicrob Resist

December 2024

Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil. Electronic address:

Objectives: Critical priority carbapenem-resistant pathogens constitute a worldwide public health problem. Escherichia coli (E. coli) ST1193 is an emerging high-risk clone that demonstrates prolonged gut persistence, and association with community-onset urinary and bloodstream infections.

View Article and Find Full Text PDF

Problem/condition: Splash pads are recreational interactive water venues that spray or jet water on users. Splash pads are intended for children aged <5 years and designed so that water typically does not collect in areas accessible to users, thereby minimizing the risk for drowning. Splash pads were first found to be associated with waterborne disease outbreaks in 1997.

View Article and Find Full Text PDF

Unraveling the Electron Transport Propellant Mechanism of Oxygen Vacancy for Boosting Hydrogen Evolution Electrocatalysis in Alkaline Seawater.

Small

November 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Currently, hydrogen evolution reaction (HER) in alkaline seawater still faces problems such as low catalyst activity and Cl poisoning of active sites. In this work, an electron transfer facilitator of oxygen vacancies is introduced as a driving force for electronic transmission, which enhances the electron-metal-support interactions (EMSI) effect while introducing a charge protective layer, realizing killing two birds with one stone. In situ characterizations and density functional theory (DFT) calculations demonstrate that the EMSI effect enhances the H transfer step at the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!