E6AP Promotes a Metastatic Phenotype in Prostate Cancer.

iScience

Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Department of Pathology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Australia. Electronic address:

Published: December 2019

Although primary prostate cancer is largely curable, progression to metastatic disease is associated with very poor prognosis. E6AP is an E3 ubiquitin ligase and a transcriptional co-factor involved in normal prostate development. E6AP drives prostate cancer when overexpressed. Our study exposed a role for E6AP in the promotion of metastatic phenotype in prostate cells. We revealed that elevated levels of E6AP in primary prostate cancer correlate with regional metastasis and demonstrated that E6AP promotes acquisition of mesenchymal features, migration potential, and ability for anchorage-independent growth. We identified the metastasis suppressor NDRG1 as a target of E6AP and showed it is key in E6AP induction of mesenchymal phenotype. We showed that treatment of prostate cancer cells with pharmacological agents upregulated NDRG1 expression suppressed E6AP-induced cell migration. We propose that the E6AP-NDRG1 axis is an attractive therapeutic target for the treatment of E6AP-driven metastatic prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864340PMC
http://dx.doi.org/10.1016/j.isci.2019.10.065DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
metastatic phenotype
8
prostate
8
phenotype prostate
8
primary prostate
8
e6ap
7
cancer
6
e6ap promotes
4
metastatic
4
promotes metastatic
4

Similar Publications

Prostate cancer is the most common type after the age of fifty. It affects males and affects the prostate gland, which protects the function of sperm by producing semen. The current study was designed to evaluate prostate cancer infection effects on some biomarkers such as irisin, Tumor necrosis factor-TNF-α, prostate acid phosphates -PAP, Glutathione-GSH, malondialdehyde-MDA, urea, and creatinine.

View Article and Find Full Text PDF

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

…But Words Will Never Hurt Me.

Eur Urol

January 2025

Eastern Health Clinical School, Monash University, Melbourne, Australia; Cancer Services, Eastern Health, Melbourne, Australia; Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!