Cloning, heterologous expression and characterization of a novel streptomyces trypsin in Bacillus subtilis SCK6.

Int J Biol Macromol

Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, PR China. Electronic address:

Published: March 2020

A novel streptomyces trypsin GM2938 was selected as the object of study. The active GM2938 contains 223 amino acid residues. Constructing recombinant plasmid and transforming Bacillus subtilis SCK6, the heterogenous expression of GM2938 was achieved. Through optimization of fermentation conditions, the expression level of GM2938 reached 1622.2 U/mL (esterase activity) and 33.8 U/mL (amidase activity). The recombinant trypsin was purified and measured: the specific activity of esterase was 5.6 × 10 U/mg, and the specific activity of amidase was 1.1 × 10 U/mg. Furthermore, the enzymatic properties of GM2938 were explore: the optimal reaction temperature and pH were 50 °C and 9.0, respectively; the recombinant enzyme show high stability at 25 °C and range of pH 5.0-9.0; Ca, K, Mg, EDTA, DTT, DMSO, methanol, glycerin and ethanediol could promote the esterase and amidase activities at the investigated concentrations, while Fe, SDS, tritonx-100, acetone, chloroform and n-hexane inhibited the trypsin activities. Kinetic parameters of GM2938 were calculated: the Km of BAEE was 3.15 × 10 mol·L, Vmax value was 2.87 × 10 mol·L·min; the Km of BAPAN was 2.20 × 10 mol·L, the Vmax was 2.40 × 10 mol·L·min. These properties give trypsin GM2938 a potential application prospect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.248DOI Listing

Publication Analysis

Top Keywords

novel streptomyces
8
streptomyces trypsin
8
bacillus subtilis
8
subtilis sck6
8
trypsin gm2938
8
specific activity
8
mol·l vmax
8
gm2938
7
trypsin
5
cloning heterologous
4

Similar Publications

Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.

View Article and Find Full Text PDF

Predictions to Increase Lasso Peptide Production in the Heterologous Host Streptomyces coelicolor M1152.

Biotechnol Bioeng

December 2024

Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.

Production of specialized metabolites are restricted to the metabolic capabilities of the organisms. Genome-scale models (GEM)s are useful to study the whole metabolism and to find metabolic engineering targets to increase the yield of a target compound. In this work we use a modified model of Streptomyces coelicolor M145 to simulate the production of lagmysin A (LP4) and the novel lagmysin B (LP2) lasso peptide, in the heterologous host Streptomyces coelicolor M1152.

View Article and Find Full Text PDF

In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6.

View Article and Find Full Text PDF

Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived sp.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!