Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a tumor-associated biological molecule, microRNA-143-3p (miR-143-3p) is implicated in the progression of papillary thyroid carcinoma (PTC). We conducted this study to elucidate the effects of miR-143-3p mediated by Musashi RNA binding protein 2 (MSI2) on the biological activities of PTC cells. The K1 cells with the lowest miR-143-3p expression were selected for the experiments. The targeting relationship between miR-143-3p and MSI2 was verified. The biological functions of miR-143-3p and MSI2 with respect to K1 cell proliferation, cycle distribution, apoptosis, invasion, migration, and tumorigenesis were studied using gain- and loss-of-function assays both in vitro and in vivo. MSI2 was verified to be a target gene of miR-143-3p. Cells treated with upregulation of miR-143-3p or silencing of MSI2 exhibited significantly decreased the expression of Bcl-2, PCNA, MCM2, Ki67, MSI2, MMP-2, and MMP-9. This was accompanied by inhibited cell proliferation, cell invasion, and migration, as well as a significant increase in Bax expression, cell cycle arrest, and cell apoptosis. More importantly, the tumor inhibitory effects of upregulated miR-143-3p were also confirmed in the tumor xenografts in nude mice. Our results indicate that upregulation of miR-143-3p suppresses the progression of PTC by impeding cell growth, invasion, and migration via downregulation of MSI2, highlighting the potential of miR-143-3p as a target for future PTC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexmp.2019.104342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!