A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Dynamics Properties without the Full Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids. | LitMetric

Molecular Dynamics Properties without the Full Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids.

J Phys Chem Lett

Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign, Urbana , Illinois 61801 , United States.

Published: December 2019

Molecular dynamics (MD) simulation is a popularly used computational tool to compute microscopic and macroscopic properties of a variety of systems including liquids, solids, biological systems, etc. To determine properties of atomic systems to a good level of accuracy with minimal noise or fluctuation, MD simulations are performed over a long time ranging from a few nanoseconds to several tens to hundreds of nanoseconds depending on the system and the properties of interest. In this study, by considering simple liquids, we explore the feasibility of significantly reducing the MD simulation time to compute various properties of monatomic systems such as the structure, pressure, and isothermal compressibility. To do so, extensive MD simulations are performed on 12 000 distinct Lennard-Jones systems at various thermodynamic states. Then, a deep denoising autoencoder network is trained to take the radial distribution function (RDF) from a single snapshot of a Lennard-Jones liquid to compute the mean, temporally averaged RDF. We show that the method is successful in the prediction of RDF and other properties such as the pressure and isothermal compressibility that can be computed based on the RDF not only for Lennard-Jones liquids at various thermodynamic states but also for various simple liquids described by exponential, Yukawa, and inverse-power-law pair potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b02820DOI Listing

Publication Analysis

Top Keywords

simple liquids
12
molecular dynamics
8
denoising autoencoder
8
autoencoder network
8
simulations performed
8
pressure isothermal
8
isothermal compressibility
8
thermodynamic states
8
properties
7
liquids
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!