Background: The gene is one of the largest human genes, being composed of 79 exons. Dystrophin Dp116 expressed from the promoter in intron 55 is a Schwann cell-specific isoform. The pathophysiological roles of Dp116 are largely unknown, because of its limited expression. This study assessed the expression of Dp116 in glioblastoma cells and evaluated the splicing patterns of the gene in these cells.

Methods: Full-length Dp116 cDNA was PCR amplified from U-251 glioblastoma cells. Dp116 protein was analyzed by Western blotting.

Results: Full-length Dp116 cDNA, extending from exon S1 to exon 79, was PCR amplified to avoid confusion with other DMD isoforms. The full-length Dp116 transcript was amplified as nearly 3 kb in size. Western blotting of U-251 cell lysates revealed a signal at a position corresponding to vector-expressed Dp116 protein, indicating that Dp116 is expressed in glioblastoma cells. Sequencing of the amplified product revealed five splice variants, all skipping exon 78. The most abundant transcript lacked only exon 78 (Dp116b), whereas the second most abundant transcript lacked both exons 71 and 78 (Dp116ab). A third transcript lacking exons 71-74 and 78 was also identified (Dp116bc). Two novel splicing patterns were also observed, one with a deletion of exons 68 and 69 (Dp116bΔ68-69) and the other with a 100 bp deletion in the 5' terminal end of exon 75 (75s), which was produced by the activation of a cryptic splice acceptor site (Dp116b75s). However, the splicing patterns in glioblastoma cells of exons in Dp116 and Dp71 showed no significant differences.

Conclusions: Dp116 is expressed in glioblastoma cells as five splicing variants, with Dp116b being the most abundant. Two novel splicing patterns of exons were observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849142PMC
http://dx.doi.org/10.1016/j.bbrep.2019.100703DOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
24
splicing patterns
20
dp116 expressed
16
dp116
12
expressed glioblastoma
12
full-length dp116
12
schwann cell-specific
8
dp116 cdna
8
pcr amplified
8
dp116 protein
8

Similar Publications

Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.

View Article and Find Full Text PDF

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

Significance: Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.

Aim: We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.

View Article and Find Full Text PDF

Exploring the various functions of PHD finger protein 20: beyond the unknown.

Toxicol Res

January 2025

Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea.

Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!