Labeling and Imaging of Amyloid Plaques in Brain Tissue Using the Natural Polyphenol Curcumin.

J Vis Exp

Field Neurosciences Institute, Ascension St. Mary's Hospital; Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University; Program in Neuroscience, Central Michigan University; Department of Psychology, Central Michigan University;

Published: November 2019

Deposition of amyloid beta protein (Aβ) in extra- and intracellular spaces is one of the hallmark pathologies of Alzheimer's disease (AD). Therefore, detection of the presence of Aβ in AD brain tissue is a valuable tool for developing new treatments to prevent the progression of AD. Several classical amyloid binding dyes, fluorochrome, imaging probes, and Aβ-specific antibodies have been used to detect Aβ histochemically in AD brain tissue. Use of these compounds for Aβ detection is costly and time consuming. However, because of its intense fluorescent activity, high-affinity, and specificity for Aβ, as well as structural similarities with traditional amyloid binding dyes, curcumin (Cur) is a promising candidate for labeling and imaging of Aβ plaques in postmortem brain tissue. It is a natural polyphenol from the herb Curcuma longa. In the present study, Cur was used to histochemically label Aβ plaques from both a genetic mouse model of 5x familial Alzheimer's disease (5xFAD) and from human AD tissue within a minute. The labeling capability of Cur was compared to conventional amyloid binding dyes, such as thioflavin-S (Thio-S), Congo red (CR), and Fluoro-jade C (FJC), as well as Aβ-specific antibodies (6E10 and A11). We observed that Cur is the most inexpensive and quickest way to label and image Aβ plaques when compared to these conventional dyes and is comparable to Aβ-specific antibodies. In addition, Cur binds with most Aβ species, such as oligomers and fibrils. Therefore, Cur could be used as the most cost-effective, simple, and quick fluorochrome detection agent for Aβ plaques.

Download full-text PDF

Source
http://dx.doi.org/10.3791/60377DOI Listing

Publication Analysis

Top Keywords

brain tissue
16
aβ plaques
16
amyloid binding
12
binding dyes
12
aβ-specific antibodies
12
10
labeling imaging
8
tissue natural
8
natural polyphenol
8
alzheimer's disease
8

Similar Publications

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Background: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.

View Article and Find Full Text PDF

Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives.

Mol Neurobiol

January 2025

Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.

Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.

View Article and Find Full Text PDF

Obesity is a major global health problem and at the same time a financial burden for social security systems. For a long time, conventional lifestyle interventions have tried unsuccessfully to find a solution. It has been proven that only interventions that ultimately address the central control centers of hunger, appetite and satiety will lead to sustained weight loss.

View Article and Find Full Text PDF

This study investigates post-stroke cognitive impairment (PSCI) by utilizing spectral dynamic causal modeling (spDCM) to examine changes in effective connectivity (EC) within the default mode, executive control, dorsal attention, and salience networks. Forty-one PSCI patients and 41 demographically matched healthy controls underwent 3D-T1WI and resting-state functional magnetic resonance imaging on a 3.0T MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!