Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cellular and molecular mechanisms underlying specification of human hematopoietic stem cells (HSCs) remain elusive. Strategies to recapitulate human HSC emergence in vitro are required to overcome limitations in studying this complex developmental process. Here, we describe a protocol to generate hematopoietic stem and progenitor-like cells from human dermal fibroblasts employing a direct cell reprogramming approach. These cells transit through a hemogenic intermediate cell-type, resembling the endothelial-to-hematopoietic transition (EHT) characteristic of HSC specification. Fibroblasts were reprogrammed to hemogenic cells via transduction with GATA2, GFI1B and FOS transcription factors. This combination of three factors induced morphological changes, expression of hemogenic and hematopoietic markers and dynamic EHT transcriptional programs. Reprogrammed cells generate hematopoietic progeny and repopulate immunodeficient mice for three months. This protocol can be adapted towards the mechanistic dissection of the human EHT process as exemplified here by defining GATA2 targets during the early phases of reprogramming. Thus, human hemogenic reprogramming provides a simple and tractable approach to identify novel markers and regulators of human HSC emergence. In the future, faithful induction of hemogenic fate in fibroblasts may lead to the generation of patient-specific HSCs for transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/60112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!