Background: Cranial radiotherapy (RT) is associated with risk for cognitive and adaptive dysfunction. Proton RT (PRT) is a technique hypothesized to spare cognition by reducing exposure to nontarget brain tissue. However, little is known regarding functional outcomes in survivors of pediatric brain tumor (BT) treated with PRT. The present study examined the relationship between cognitive and adaptive outcomes in pediatric BT survivors post-PRT.
Methods: Survivors treated with either focal (n = 33) or craniospinal irradiation (CSI; n = 37) PRT completed neurocognitive evaluations approximately 5 years post-treatment. Results of intelligence testing and ratings of adaptive functioning are reported. Mediation models examined the relationship among radiation field, cognition, and adaptive functioning.
Results: The PRT CSI group demonstrated worse cognitive outcomes than the PRT Focal group across each cognitive index (Cohen's d = 0.56-0.70). Parent ratings of adaptive functioning were also worse in the PRT CSI group than the PRT Focal group (Global Adaptive Composite, d = 0.53; conceptual skills, d = 0.67). Cognitive performance fully mediated the relationship between radiation field and adaptive outcomes, while controlling for group differences in tumor histology and RT dose.
Conclusions: Focal PRT survivors demonstrated generally positive outcomes with weaknesses in processing speed and aspects of adaptive functioning. CSI exposure was associated with more consistently poor cognitive and adaptive outcomes. The increased risk for adaptive dysfunction in the PRT CSI group appeared due to the effects of CSI on cognition. Efforts to reduce the volume of tissue exposure to RT remain important.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433211 | PMC |
http://dx.doi.org/10.1002/pbc.28064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!