Celiac disease is caused by an abnormal intestinal T cell response to cereal gluten proteins. The disease has a strong human leukocyte antigen (HLA) association, and CD4 T cells recognizing gluten epitopes presented by disease-associated HLA-DQ allotypes are considered to be drivers of the disease. This paper provides an update of the currently known HLA-DQ restricted gluten T cell epitopes with their names and sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00251-019-01141-w | DOI Listing |
EFSA J
December 2024
Department of Biomedical Sciences, Institute of Biochemistry and Cell Biology National Research Council of Italy Naples Italy.
This study provides a comprehensive proteomic and metabolomic analysis of novel anthocyanin- and carotenoid-rich wheat varieties to assess their immunogenicity in the context of Celiac Disease. Using (semi)-quantitative mass spectrometry, the research found that gliadin expression and peptide release, particularly those containing immunostimulatory γ-gliadin epitopes, vary significantly across different wheat varieties. While non-targeted mass spectrometry provided valuable insights, the study acknowledged potential methodological biases, such limitations of ion current intensity as a measure of peptide abundance.
View Article and Find Full Text PDFFoods
October 2024
Laboratory of Cereals, Food Science and Technology Department, Federal University of Santa Catarina, Av. Admar Gonzaga, 1346, Itacorubi, Florianopolis 88034-001, SC, Brazil.
Commercial Brazilian wheat flour was subjected to extrusion, oven, and microwave treatments. The solubility, monomeric and polymeric proteins, and the glutenin and gliadin profiles of the gluten were analyzed. In addition, in vitro digestibility and response against potential celiac disease immune-stimulatory epitopes were investigated.
View Article and Find Full Text PDFMolecules
September 2024
Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland.
The byproduct from wheat starch production contains approximately 70% gluten (WG) and is an inexpensive but demanding protein raw material for the food industry. This study attempted to determine the optimal hydrolysis conditions for such raw material to obtain peptides combining beneficial functional characteristics with health-promoting activity. The proteases Bromelain, Alcalase, Flavourzyme, and a protease from were used for hydrolysis.
View Article and Find Full Text PDFBiomedicines
August 2024
Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
Background: Celiac disease (CD) is an immune-mediated disease characterized by disruptions of the small intestine. Factors such as viral and bacterial infections can trigger CD. Recently, the reactivation of Human Endogenous Retroviruses (HERVs) has also been implicated, but little is known about their specific role in patients with celiac disease.
View Article and Find Full Text PDFFood Chem
December 2024
College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
High-sensitivity 4D label-free proteomic technology was used to identify protein components related to gluten quality and celiac disease (CD) in strong-gluten wheat cultivar KX 3302 and medium-gluten wheat cultivar BN 207. The highly expressed storage protein components in KX3302 were high-molecular-weight-glutenin-subunits (HMW-GSs), α-gliadin, and globulin, whereas those in BN207 were γ-gliadin, low-molecular-weight-glutenin-subunits (LMW-GSs) and avenin-like proteins. In addition, BN207 had more upregulated metabolic proteins than KX3302.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!