Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The formation of structure in the visual system, that is, of the connections between cells within neural populations, is by and large an unsupervised learning process. In the primary visual cortex of mammals, for example, one can observe during development the formation of cells selective to localized, oriented features, which results in the development of a representation in area V1 of images' edges. This can be modeled using a sparse Hebbian learning algorithms which alternate a coding step to encode the information with a learning step to find the proper encoder. A major difficulty of such algorithms is the joint problem of finding a good representation while knowing immature encoders, and to learn good encoders with a nonoptimal representation. To solve this problem, this work introduces a new regulation process between learning and coding which is motivated by the homeostasis processes observed in biology. Such an optimal homeostasis rule is implemented by including an adaptation mechanism based on nonlinear functions that balance the antagonistic processes that occur at the coding and learning time scales. It is compatible with a neuromimetic architecture and allows for a more efficient emergence of localized filters sensitive to orientation. In addition, this homeostasis rule is simplified by implementing a simple heuristic on the probability of activation of neurons. Compared to the optimal homeostasis rule, numerical simulations show that this heuristic allows to implement a faster unsupervised learning algorithm while retaining much of its effectiveness. These results demonstrate the potential application of such a strategy in machine learning and this is illustrated by showing the effect of homeostasis in the emergence of edge-like filters for a convolutional neural network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802809 | PMC |
http://dx.doi.org/10.3390/vision3030047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!