When the head is tilted, an objectively vertical line viewed in isolation is typically perceived as tilted. We explored whether this shift also occurs when viewing global motion displays perceived as either object-motion or self-motion. Observers stood and lay left side down while viewing (1) a static line, (2) a random-dot display of 2-D (planar) motion or (3) a random-dot display of 3-D (volumetric) global motion. On each trial, the line orientation or motion direction were tilted from the gravitational vertical and observers indicated whether the tilt was clockwise or counter-clockwise from the perceived vertical. Psychometric functions were fit to the data and shifts in the point of subjective verticality (PSV) were measured. When the whole body was tilted, the perceived tilt of both a static line and the direction of optic flow were biased in the direction of the body tilt, demonstrating the so-called A-effect. However, we found significantly larger shifts for the static line than volumetric global motion as well as larger shifts for volumetric displays than planar displays. The A-effect was larger when the motion was experienced as self-motion compared to when it was experienced as object-motion. Discrimination thresholds were also more precise in the self-motion compared to object-motion conditions. Different magnitude A-effects for the line and motion conditions-and for object and self-motion-may be due to differences in combining of idiotropic (body) and vestibular signals, particularly so in the case of vection which occurs despite visual-vestibular conflict.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802772 | PMC |
http://dx.doi.org/10.3390/vision3020013 | DOI Listing |
AJNR Am J Neuroradiol
January 2025
From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.
Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Lokmanya Tilak Municipal Medical college, Sion Mumbai., India.
Introduction: Road traffic accidents (RTA) account for a sizable portion of morbidity and mortality globally, with a particularly high incidence among young and active individuals. Patients presenting with polytrauma require a multidisciplinary approach guided by protocols for advanced trauma life support.
Case Report: We report the case of a 31-year-old female, transferred-in to our center following primary care after an RTA on June 17th, 2023.
J Infect Public Health
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
Sensors (Basel)
January 2025
School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Video frame interpolation (VFI) is a task that generates intermediate frames from two consecutive frames. Previous studies have employed two main approaches to extract the necessary information from both frames: pixel-level synthesis and flow-based methods. However, when synthesizing high-resolution videos using VFI, each approach has its limitations.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shenyang Research Institute, China Coal Technology and Engineering Group, Shenyang 113122, China.
The coal industry is a high risk, high difficulty industry, and the annual global mine accident rate is high, so the safety of coal mine underground operations has been a concern. With the development of technology, the application of intelligent security technology in coal mine safety has broad prospects. In this paper, the research progress of vital signs monitoring and support equipment for underground personnel in coal mines is reviewed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!