Cytokinesis is fundamental for cell proliferation [1, 2]. In plants, a bipolar short-microtubule array forms the phragmoplast, which mediates vesicle transport to the midzone and guides the formation of cell walls that separate the mother cell into two daughter cells [2]. The phragmoplast centrifugally expands toward the cell cortex to guide cell-plate formation at the cortical division site [3, 4]. Several proteins in the phragmoplast midzone facilitate the anti-parallel bundling of microtubules and vesicle accumulation [5]. However, the mechanisms by which short microtubules are maintained during phragmoplast development, in particular, the behavior of microtubules at the distal zone of phragmoplasts, are poorly understood. Here, we show that a plant-specific protein, CORTICAL MICROTUBULE DISORDERING 4 (CORD4), tethers the conserved microtubule-severing protein katanin to facilitate formation of the short-microtubule array in phragmoplasts. CORD4 was specifically expressed during mitosis and localized to preprophase bands and phragmoplast microtubules. Custom-made two-photon spinning disk confocal microscopy revealed that CORD4 rapidly localized to microtubules in the distal phragmoplast zone during phragmoplast assembly at late anaphase and persisted throughout phragmoplast expansion. Loss of CORD4 caused abnormally long and oblique phragmoplast microtubules and slow expansion of phragmoplasts. The p60 katanin subunit, KTN1, localized to the distal phragmoplast zone in a CORD4-dependent manner. These results suggest that CORD4 tethers KTN1 at phragmoplasts to modulate microtubule length, thereby accelerating phragmoplast growth. This reveals the presence of a distinct machinery to accelerate cytokinesis by regulating the action of katanin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2019.09.049 | DOI Listing |
Plant Cell
December 2024
Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA.
Plant Cell Environ
January 2025
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
Plant organs achieve their specific size and shape through the coordination of cell division and cell expansion, processes that are profoundly influenced by environmental cues. Cytokinesis during cell division depends on the position of the cytokinetic wall, but how this process responses to environment fluctuations remains underexplored. Here, we investigated a regulatory module involving C2H2-type zinc finger protein (C2H2-ZFP) in leaf morphology during drought stress.
View Article and Find Full Text PDFCurr Biol
August 2024
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA. Electronic address:
The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis.
View Article and Find Full Text PDFNew Phytol
September 2024
College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!