Background: Identifying optimal priming strategies for children <2 years could substantially improve the public health benefits of influenza vaccines. Adjuvanted seasonal influenza vaccines were designed to promote a better immune response among young vaccine-naïve children.
Methods: We systematically reviewed randomized trials to assess hemagglutination inhibition (HAI) antibody response to MF59-adjuvanted inactivated influenza vaccine (aIIV) versus nonadjuvanted IIV among children. We estimated pooled ratios of post-vaccination HAI geometric mean titer (GMT) for aIIV versus IIV and confidence intervals (CIs) using the pooled variances derived from reported CIs.
Results: Mean age was 28 months (range, 6-72 months). Children received vaccines with either 7.5 μg (6-35 months) or 15 μg (≥36 months) hemagglutinin of each strain depending on age. Seven of eight trials administered trivalent vaccines and one used quadrivalent vaccine. Pooled post-vaccination GMT ratios against the three influenza vaccine strains were 2.5-3.5 fold higher after 2-dose-aIIV versus 2-dose-IIV among children 6-72 months, and point estimates were higher among children 6-35 months compared with older children. When comparing 1-dose-aIIV to 2-dose-IIV doses, pooled GMT ratios were not significantly different against A/H1N1 (1.0; 95% CI: 0.5-1.8; p = 0.90) and A/H3N2 viruses (1.0; 95% CI: 0.7-1.5; p = 0.81) and were significantly lower against B viruses (0.6; 95% CI: 0.4-0.8; p < 0.001) for both age groups. Notably, GMT ratios for vaccine-mismatched heterologous viruses after 2-dose-aIIV compared with 2-dose-IIV were higher against A/H1N1 (2.0; 95% CI: 1.1-3.4), A/H3N2 (2.9; 95% CI: 1.9-4.2), and B-lineage viruses (2.1; 95% CI: 1.8-2.6).
Conclusions: Two doses of adjuvanted IIV consistently induced better humoral immune responses against Type A and B influenza viruses compared with nonadjuvanted IIVs in young children, particularly among those 6-35 months. One adjuvanted IIV dose had a similar response to two nonadjuvanted IIV doses against Type A influenza viruses. Longer-term benefits from imprinting and cell-mediated immunity, including trials of clinical efficacy, are gaps that warrant investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2019.10.053 | DOI Listing |
Vaccine
December 2024
Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil. Electronic address:
PLOS Glob Public Health
September 2024
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
Induction of broad, durable immune responses is a challenge in HIV vaccine development. HVTN 100 Part A administered subtype C-containing ALVAC-HIV at months 0 and 1, and ALVAC-HIV with bivalent subtype C gp120/MF59 at months 3, 6 and 12. As IgG binding antibody and T-cell responses were similar or greater at month 12.
View Article and Find Full Text PDFFront Immunol
July 2024
Patronus Biotech Co. Ltd., Guangzhou, China.
Herpes zoster (HZ), also known as shingles, remains a significant global health issue and most commonly seen in elderly individuals with an early exposure history to varicella-zoster virus (VZV). Currently, the licensed vaccine Shingrix, which comprises a recombinant VZV glycoprotein E (gE) formulated with a potent adjuvant AS01B, is the most effective shingles vaccine on the market. However, undesired reactogenicity and increasing global demand causing vaccine shortage, prompting the development of novel shingles vaccines.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
August 2024
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA.
Background: An effective vaccine is required to end the HIV pandemic. We evaluated the safety and immunogenicity of a DNA (DNA-HIV-PT123) vaccine with low- or high-dose bivalent (TV1.C and 1086.
View Article and Find Full Text PDFPLoS Med
March 2024
Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
Background: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!