A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aggregates Dramatically Alter Fibrin Ultrastructure. | LitMetric

Aggregates Dramatically Alter Fibrin Ultrastructure.

Biophys J

Université Grenoble Alpes, Laboratoire Rhéologie et Procédés, UMR CNRS 5520, Grenoble, France. Electronic address:

Published: January 2020

AI Article Synopsis

  • The study investigates how the polydispersity of fibrinogen affects fibrin structure, highlighting its significance alongside factors like concentration and pH.
  • The researchers compared a monodisperse fibrinogen preparation, which lacks aggregates, and a polydisperse one, which contains significant aggregates and showed different structural characteristics.
  • Findings indicated that the presence of aggregates in the polydisperse fibrinogen significantly alters the fibrin's multiscale structure, impacting its organization and network formation compared to the monodisperse type.

Article Abstract

Among the many factors influencing fibrin formation and structure (concentration, temperature, composition, pH, etc.), it has been suggested that the polydispersity of fibrinogen may play an important role. We propose here a detailed investigation of the influence of this parameter on fibrin multiscale structure. Two commercial fibrinogen preparations were used, a monodisperse and a polydisperse one. First, the respective compositions of both fibrinogen preparations were thoroughly determined by measuring the fibrin-stabilizing factor; fibronectin; α, β, and γ intact chain contents; the γ/γ' chains ratio; the N-glycosylation; and the post-translational modifications. Slight variations between the composition of the two fibrinogen preparations were found that are much smaller than the compositional variations necessary to alter significantly fibrin multiscale structure as observed in the literature. Conversely, multiangle laser light scattering-coupled size exclusion chromatography and dynamic light scattering measurements showed that the polydisperse preparation contains significant amounts of aggregates, whereas the other preparation is essentially monodisperse. The multiscale structure of the fibrins produced from those two fibrinogen preparations was determined by using x-ray scattering, spectrophotometry, and confocal microscopy. Results show that fibers made from the aggregate-free fibrinogen present a crystalline longitudinal and lateral structure and form a mikado-like network. The network produced from the aggregates containing fibrinogen looks to be partly built around bright spots that are attributed to the aggregate. The multiscale structure of mixtures between the two preparations shows a smooth evolution, demonstrating that the quantity of aggregates is a major determining factor for fibrin multiscale structure. Indeed, the effect of a few percent in the mass of aggregates is larger than any other effect because of compositional differences under the same reaction conditions. Finally, we propose a mechanistic interpretation of our results, which points at a direct role of the aggregates during polymerization, which disrupts the ideal ordering of monomers inside fibrin protofibrils and fibers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950636PMC
http://dx.doi.org/10.1016/j.bpj.2019.10.034DOI Listing

Publication Analysis

Top Keywords

multiscale structure
20
fibrinogen preparations
16
fibrin multiscale
12
alter fibrin
8
structure
7
fibrinogen
7
aggregates
6
fibrin
6
multiscale
5
preparations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: