Combining the individual analytical strengths of mass spectrometry and infrared spectroscopy, infrared ion spectroscopy is increasingly recognized as a powerful tool for small-molecule identification in a wide range of analytical applications. Mass spectrometry is itself a leading analytical technique for small-molecule identification on the merit of its outstanding sensitivity, selectivity and versatility. The foremost shortcoming of the technique, however, is its limited ability to directly probe molecular structure, especially when contrasted against spectroscopic techniques. In infrared ion spectroscopy, infrared vibrational spectra are recorded for mass-isolated ions and provide a signature that can be matched to reference spectra, either measured from standards or predicted using quantum-chemical calculations. Here we present an overview of the potential for this technique to develop into a versatile analytical method for identifying molecular structures in mass spectrometry-based analytical workflows. In this tutorial perspective, we introduce the reader to the technique of infrared ion spectroscopy and highlight a selection of recent experimental advances and applications in current analytical challenges, in particular in the field of untargeted metabolomics. We report on the coupling of infrared ion spectroscopy with liquid chromatography and present experiments that serve as proof-of-principle examples of strategies to address outstanding challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2019.10.043 | DOI Listing |
The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
Abnormal ferrous ion (Fe) levels lead to an increase in reactive oxygen species (ROS) in cells, disrupting intracellular viscosity and the occurrence of hepatocellular carcinoma (HCC). Simultaneously visualizing Fe and intracellular viscosity is essential for understanding the detailed pathophysiological processes of HCC. Herein, we report the first dual-responsive probe, , capable of simultaneously monitoring Fe and viscosity.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.
In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!