Objective: The study evaluates the effect of adding graphene-Ag nanoparticles (G-AgNp) to a PMMA auto-polymerizing resin, with focus on antibacterial activity, cytotoxicity, monomer release, and mechanical properties.

Materials And Methods: Auto-polymerizing acrylic resin (M) was loaded with 1 wt% G-AgNp (P1) and 2 wt% G-AgNp (P2). Methyl methacrylate monomer release (MMA) was measured after immersion of the samples in chloroform and cell medium respectively. Cell viability was assessed on dysplastic oral keratinocytes (DOK) and dental pulp stem cells. Oxidative stress and inflammatory response following exposure of dysplastic oral keratinocytes to the experimental resins was evaluated. Antibacterial activity against Staphylococcus aureus, Streptococcus mutans and Escherichia coli and also flexural strength of the resins were assessed.

Results: Residual monomer: For samples immersed in chloroform, MMA concentration reached high levels, 10.27 μg/g for sample P1; MMA increased at higher G-AgNp loading; 0.63 μg/g MMA was found in medium for P1, and less for sample P2. Cell viability: Both cell lines displayed a viability decrease, but remained above 75%, compared to controls, when exposed to undiluted samples. Inflammation: proinflammatory molecule TNF-α decreased when DOK cultures were exposed to G-AgNp samples. MDA levels indicated increased oxidative stress damage in cells treated with PMMA, confirmed by the antioxidant mechanism activation, while samples containing G-AgNp induced an antioxidant effect. All tested samples showed antibacterial properties against Gram-positive bacteria. Samples containing G-AgNp also exhibited bactericide action on E. coli. Mechanical properties: both samples containing G-AgNp improved flexural strength compared to the sample resin, measured through elastic strength parameters.

Conclusions: PMMA resin loaded with G-AgNp presents promising antibacterial activity associated with minimal toxicity to human cells, in vitro, as well as improved flexural properties.

Clinical Relevance: These encouraging results obtained in vitro support further in vivo investigation, to thoroughly check whether the PMMA loaded with graphene-silver nanoparticles constitute an improvement over current denture materials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-019-03133-2DOI Listing

Publication Analysis

Top Keywords

flexural strength
12
antibacterial activity
12
samples g-agnp
12
g-agnp
9
monomer release
8
resin loaded
8
wt% g-agnp
8
samples
8
cell viability
8
dysplastic oral
8

Similar Publications

Biaxial Flexural Strength and Vickers Hardness of 3D-Printed and Milled 5Y Partially Stabilized Zirconia.

J Funct Biomater

January 2025

Department of Prosthodontics, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.

This study compares the mechanical properties of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) materials, designed for 3D printing or milling. Three 5Y-PSZ materials were investigated: printed zirconia (PZ) and two milled zirconia materials, VITA-YZ-XT (MZ-1) and Cercon xt (MZ-2). PZ samples were made from a novel ceramic suspension via digital light processing and divided into three subgroups: PZ-HN-ZD (horizontal nesting, printed with Zipro-D Dental), PZ-VN-Z (vertical nesting, printed with Zipro-D Dental) and PZ-VN-Z (vertical nesting, printed with Zipro Dental).

View Article and Find Full Text PDF

Evaluation of Extra-High Translucent Dental Zirconia: Translucency, Crystalline Phase, Mechanical Properties, and Microstructures.

J Funct Biomater

January 2025

Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan.

Highly translucent zirconia (TZ) is frequently used in dentistry. The properties of several highly translucent zirconia materials available in the market require an in-depth understanding. In this study, we assessed the translucency, crystalline phase, mechanical properties, and microstructures of three newly developed highly translucent zirconia materials (Zpex 4.

View Article and Find Full Text PDF

Improving the Long-Term Mechanical Properties of Thermoplastic Short Natural Fiber Compounds by Using Alternative Matrices.

Biomimetics (Basel)

January 2025

Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands.

Wood plastic composites (WPCs) offer a means to reduce the carbon footprint by incorporating natural fibers to enhance the mechanical properties. However, there is limited information on the mechanical properties of these materials under hostile conditions. This study evaluated composites of polypropylene (PP), polystyrene (PS), and polylactic acid (PLA) processed via extrusion and injection molding.

View Article and Find Full Text PDF

Polymer matrix composites are popular for their lightweight and high strength. Poly (methyl methacrylate) (PMMA), known for its transparency, can be toughened with polyurethane (PU) to expand its applications. This study further strengthened PU-PMMA by adding carbon fiber powder from offcut fabrics (oCFP), enhancing mechanical and adhesion properties.

View Article and Find Full Text PDF

Fracture resistances of heat-treated nickel-titanium files used for minimally invasive instrumentation.

BMC Oral Health

January 2025

Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Dental and Life Science Institute, Pusan National University, Yangsan, Korea.

Background: This study compared the torsional resistance, bending stiffness, and cyclic fatigue resistances of different heat-treated NiTi files for minimally invasive instrumentation.

Methods: TruNatomy (TN) and EndoRoad (ER) file systems were compared with ProTaper Gold (PG). Torsional load, distortion angle, and bending stiffness were assessed using a custom device AEndoS, and toughness was calculated using the torsional data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!