Microplastics have become a global concern due to their increasing use and discharge into the environment. These ubiquitous particles are known to have extremely low degradation rates and accumulate mostly in the marine environment. The evidence for bioaccumulation and indicators of stress linked to microplastics is also stated in the literature. However, the real environmental impact of microplastics has not yet been revealed. Therefore, it is crucial to understand the interaction mechanisms between microplastics and (micro)organisms under controlled (standard) laboratory conditions and environmentally relevant conditions to reflect the true environmental -situation. In this study, we aimed to understand how microplastics extracted from commercially available toothpaste samples interacted with four types of bacteria under both standard and seawater conditions. For this purpose, bacterial inhibitions were examined, and mechanisms of inhibition were evaluated by biochemical parameters (total protein, lipid peroxidase, total antioxidant capacity, and extracellular carbohydrate levels) of bacteria and physicochemical properties (zeta potential, particle size, surface chemistry) of microplastics. Results showed that gram-positive Bacillus subtilis and gram-negative Pseudomonas aeruginosa were affected in controlled and sea water media, respectively. The inhibition of the bacteria relied on the high zeta potentials of the microplastics, and, biochemically, protein and lipid peroxidase activity of bacteria were important in both media. On the other hand, while biochemical responses were similar in both media, the difference between the cell wall and microplastics surface charge was important only in seawater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135024 | DOI Listing |
Integr Environ Assess Manag
January 2025
Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, United States.
The growing concern over environmental pollution has spurred extensive research into various contaminants impacting ecosystems and human health. Emerging contaminants (ECs), including pharmaceuticals, personal care products, endocrine-disrupting chemicals, nanomaterials, and microplastics, have garnered significant attention due to their persistence, bioaccumulation, and toxicity. This study presents a comprehensive bibliometric analysis of EC research, aiming to detail the research landscape, highlight significant contributions, and identify influential researchers and pivotal studies.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea.
The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.
View Article and Find Full Text PDFSingle use plastics are a leading source of microplastics that have been detected along the food chain. This study evaluated the potential of starch (ST) and carrageenan (CRG) in packaging film formulation. CRG isolated from the seaweed (SW) was blended with starch and cast to obtain films whose moisture content (MC), total soluble matter (TSM), degree of solubility (DS), water vapor permeability (WVP), opacity (O), contact angles (CA), moisture absorption (MA), and percent elongation (PE) were evaluated.
View Article and Find Full Text PDFToxicol Rep
June 2025
Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India.
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!