A compound's intratumoural distribution is an important determinant for the effectiveness of molecular therapy or imaging. Antibodies (Abs), though often used in the design of targeted compounds, struggle to achieve a homogenous distribution due to their large size and bivalent binding mechanism. In contrast, smaller compounds like nanobodies (Nbs) are expected to distribute more homogenously, though this has yet to be demonstrated in vivo at the microscopic level. We propose an intravital approach to evaluate the intratumoural distribution of different fluorescently labeled monomeric and dimeric Nb tracers and compare this with a monoclonal antibody (mAb). Monomeric and dimeric formats of the anti-HER2 (2Rb17c and 2Rb17c-2Rb17c) and control (R3B23 and R3B23-R3B23) Nb, as well as the dimeric monovalent Nb 2Rb17c-R3B23 were generated and fluorescently labeled with a Cy5 fluorophore. The mAb trastuzumab-Cy5 was also prepared. Whole-body biodistribution of all constructs was investigated in mice bearing subcutaneous xenografts (HER2+ SKOV3) using in vivo epi-fluorescence imaging. Next, for intravital experiments, GFP-expressing SKOV3 cells were grown under dorsal window chambers on athymic nude mice (n = 3/group), and imaged under a fluorescence stereo microscope immediately after intravenous injection of the tracers. Consecutive fluorescence images within the tumour were acquired over the initial 20 min after injection and later, single images were taken at 1, 3 and 24 h post-injection. Additionally, two-photon microscopy was used to investigate the colocalization of GFP (tumour cells) and Cy5 fluorescence (tracers) at higher resolution. Whole-body images showed rapid renal clearance of all Nbs, and fast tumour targeting for the specific Nbs. Specific tumour uptake of the mAb could only be clearly distinguished from background after several hours. Intravital imaging revealed that monomeric Nb tracers accumulated rapidly and distributed homogenously in the tumour mere minutes after intravenous injection. The dimeric compounds initially achieved lower fluorescence intensities than the monomeric. Furthermore, whereas the HER2-specific dimeric bivalent compound remained closely associated to the blood vessels over 24 h, the HER2-specific dimeric monovalent tracer achieved a more homogenous tumour distribution from 1 h post-injection onwards. Non-specific tracers were not retained in the tumour. Trastuzumab had the most heterogenous intratumoural distribution of all evaluated compounds, while -due to the long blood retention- achieving the highest overall tumour uptake at 24 h post-injection. In conclusion, monomeric Nbs very quickly and homogenously distribute through tumour tissue, at a rate significantly greater than dimeric Nbs and mAbs. This underlines the potential of monomeric Nb tracers and therapeutics in molecular imaging and targeted therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2019.11.014 | DOI Listing |
Bioact Mater
April 2025
Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
mRNA therapeutics is revolutionizing the treatment concepts toward many diseases including cancer. The potential of mRNA is, however, frequently limited by modest control over site of transfection. Here, we have explored a library of multivalent ionizable lipid-polypeptides (MILP) to achieve robust mRNA complexation and tumor-confined transfection.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.
Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.
Front Immunol
January 2025
Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China.
Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response.
View Article and Find Full Text PDFJ Hepatocell Carcinoma
January 2025
Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China.
The intratumoral microbiota, an integral part of liver tumors, has garnered significant attention from researchers due to its role in tumor development regulation and impact on cancer treatment. Intratumoral microorganism not only influences tumorigenesis and progression, but also serves as potential biomarkers and targets for tumor therapy. Targeted manipulation of these microorganisms holds great promise for personalized liver cancer treatment.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Clinical Engineering, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background: The increased use of low-dose computed tomography (CT) for lung cancer screening has improved the detection of ground-glass nodules. However, as the clinical utility of CT findings to predict the invasiveness of pure ground-glass nodules (pGGNs) is currently limited, differentiating pGGNs that indicate invasive adenocarcinoma (IAC) from those that represent other histological entities is challenging. We aimed to quantify intratumor heterogeneity of lung adenocarcinomas characterized by pGGNs on CT to assess its efficacy in predicting IACs before surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!