Elevated ocular pressure reduces voltage-gated sodium channel NaV1.2 protein expression in retinal ganglion cell axons.

Exp Eye Res

Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 11435 Medical Research Building IV, 2215B Garland Ave, Nashville, TN, 37232-0654, USA. Electronic address:

Published: January 2020

Glaucoma is an age-related neurodegenerative disease that is commonly associated with sensitivity to intraocular pressure. The disease selectively targets retinal ganglion cells (RGCs) and constituent axons. RGC axons are rich in voltage-gated sodium channels, which are essential for action potential initiation and regeneration. Here, we identified voltage-dependent sodium channel, NaV1.2, in the retina, examined how this channel contributes to RGC light responses, and monitored NaV1.2 mRNA and protein expression in the retina during progression of modeled glaucoma. We found NaV1.2 is predominately localized in ganglion cell intraretinal axons with dispersed expression in the outer and inner plexiform layers. We showed Phrixotoxin-3, a potent NaV1.2 channel blocker, significantly decreased RGC electrical activity in a dose-dependent manner with an I50 of 40 nM. Finally, we found four weeks of raised intraocular pressure (30% above baseline) significantly increased NaV1.2 mRNA expression but reduced NaV1.2 protein level in the retina up to 57% (p < 0.001). Following prolonged intraocular pressure elevation, NaV1.2 protein expression particularly diminished at distal sections of ganglion cell intraretinal axons (p ≤ 0.01). Our results suggest NaV1.2 might be a therapeutic target during disease progression to maintain RGC excitability, preserving presynaptic connections through action potential backpropagation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957720PMC
http://dx.doi.org/10.1016/j.exer.2019.107873DOI Listing

Publication Analysis

Top Keywords

voltage-gated sodium
8
sodium channel
8
channel nav12
8
nav12 protein
8
protein expression
8
retinal ganglion
8
ganglion cell
8
intraocular pressure
8
nav12 mrna
8
nav12
7

Similar Publications

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Super-refractory status epilepticus (SRSE) is defined as status epilepticus that persists or recurs after treatment with anesthetic agents for more than 24 hours, including cases with recurrent seizures on reduction or withdrawal of anesthetic drugs. Super-refractory status epilepticus presents a significant challenge for neurologists, particularly when standard treatments fail to achieve seizure control. Lacosamide, which has a unique mechanism involving modulating voltage-gated sodium channels by enhancing their slow inactivation, has emerged as a potential option for managing SRSE.

View Article and Find Full Text PDF

Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.

View Article and Find Full Text PDF

Elucidating the roles of voltage sensors in Na1.9 activation and inactivation through a spider toxin.

Biochim Biophys Acta Gen Subj

January 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life sciences, Hunan Normal University, Changsha, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China. Electronic address:

The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.

View Article and Find Full Text PDF

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!