Severe hepatic insults can lead to acute liver failure and hepatic encephalopathy (HE). Transforming growth factor β1 (TGFβ1) has been shown to contribute to HE during acute liver failure; however, TGFβ1 must be activated to bind its receptor and generate downstream effects. One protein that can activate TGFβ1 is thrombospondin-1 (TSP-1). Therefore, the aim of this study was to assess TSP-1 during acute liver failure and HE pathogenesis. C57Bl/6 or TSP-1 knockout (TSP-1) mice were injected with azoxymethane (AOM) to induce acute liver failure and HE. Liver damage, neurologic decline, and molecular analyses of TSP-1 and TGFβ1 signaling were performed. AOM-treated mice had increased TSP-1 and TGFβ1 mRNA and protein expression in the liver. TSP-1 mice administered AOM had reduced liver injury as assessed by histology and serum transaminase levels compared with C57Bl/6 AOM-treated mice. TSP-1 mice treated with AOM had reduced TGFβ1 signaling that was associated with less hepatic cell death as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and cleaved caspase 3 expression. TSP-1 AOM-treated mice had a reduced rate of neurologic decline, less cerebral edema, and a decrease in microglia activation in comparison with C57Bl/6 mice treated with AOM. Taken together, TSP-1 is an activator of TGFβ1 signaling during AOM-induced acute liver failure and contributes to both liver pathology and HE progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013272 | PMC |
http://dx.doi.org/10.1016/j.ajpath.2019.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!