Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). While the clinical presentation of LRRK2 mutation carriers is similar to that of idiopathic PD (iPD) patients, the neuropathology of LRRK2 PD is less clearly defined. Lewy bodies (LBs) composed of α-synuclein are a major feature of iPD, but are not present in all LRRK2 PD cases. There is some evidence that tau may act as a neuropathological substrate in LB-negative LRRK2 PD, but this has not been examined systematically. In the current study, we examined α-synuclein, tau, and amyloid β (Aβ) pathologies in 12 LRRK2 mutation carriers. We find that α-synuclein pathology is present in 63.6% of LRRK2 mutation carriers, but tau pathology can be found in 100% of carriers and is abundant in 91% of carriers. We further use an antibody which selectively binds Alzheimer's disease (AD)-type tau and use quantitative analysis of tau pathology to demonstrate that AD tau is the prominent type of tau present in LRRK2 mutation carriers. Abundant Aβ pathology can also be found in LRRK2 mutation carriers and is consistent with comorbid AD pathology. Finally, we assessed the association of neuropathology with clinical features in LRRK2 mutation carriers and idiopathic individuals and find that LRRK2 PD shares clinical and pathological features of idiopathic PD. The prevalence of AD-type tau pathology in LRRK2 PD is an important consideration for understanding PD pathogenesis and refining clinical trial inclusion and progression criterion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858668 | PMC |
http://dx.doi.org/10.1186/s40478-019-0836-x | DOI Listing |
Mutations in leucine-rich repeat kinase 2 ( ) are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of -PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of -PD cases do not have Lewy-related pathology.
View Article and Find Full Text PDFNeurol Sci
January 2025
School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India.
Cell Commun Signal
January 2025
Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.
View Article and Find Full Text PDFFront Neurosci
December 2024
German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.
View Article and Find Full Text PDFJ Control Release
January 2025
Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213003, China. Electronic address:
Rationale: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene play an important role in Parkinson's disease (PD) pathogenesis, and downregulation of LRRK2 has become a promising therapy for PD. Here, we developed a synthetic biology strategy for the self-assembly and delivery of small interfering RNAs (siRNAs) of LRRK2 into the substantia nigra via small extracellular vesicles (sEVs) using a genetic circuit (in the form of naked DNA plasmid) to attenuate PD-like phenotypes in mouse model.
Methods: We generated the genetic circuit encoding both a neuron-targeting rabies virus glycoprotein (RVG) tag and a LRRK2 siRNA under the control of a cytomegalovirus (CMV) promoter, and assessed its therapeutic effects using LRRK2 mouse models of PD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!