The depressed P cycle contributes to the acquisition of ampicillin resistance in Edwardsiella piscicida.

J Proteomics

Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China. Electronic address:

Published: February 2020

Antibiotic-resistant bacteria are an increasingly serious threat to human health and aquaculture. To further explore bacterial antibiotic resistance mechanism, iTRAQ is used to identify a differential proteome in ampicillin-resistant LTB4 (LTB4-R), a strain of Edwardsiella piscicida. A total of 102 differentially proteins with 50 upregulation and 52 downregulation are identified. Since many of these changes are related to metabolism, interactive pathways explorer(iPath) is used to understand a global differentially metabolic response in LTB4-R This analysis identifies a global depressed metabolic modulation as the most characteristic feature of LTB4-R. Lower membrane potential and ATP in LTB4-R than control support that the central carbon metabolism and energy metabolism are reduced. Since the pyruvate cycle (the P cycle) plays a key role in the central carbon metabolism and energy metabolism, further investigation focuses on the P cycle and shows that expression of genes and activity of enzymes in the P cycle are decreased in LTB4-R. These results support the conclusion that the depressed P cycle contributes to the acquisition of ampicillin resistance in E.piscicida. These findings indicate that the combination of proteomics and iPath analysis can provide a global metabolic profile, which helps us better understand the correlation between ampicillin resistance and cellular metabolism. SIGNIFICANCE: The present study uses iTRAQ to explore ampicillin resistance mechanism in Edwardsiella piscicida and finds many of these differential abundances of proteins are related to metabolism. IPath further identifies a global depressed metabolic modulation and characterizes the reduced pyruvate cycle as the most characteristic feature of the ampicillin-resistant E. piscicida, which is supported by reduced expression of genes and activity of enzymes in the pyruvate cycle. Consisitently, lower membrane potential and ATP are detetced. These results reveal the metabolic mechanism of ampicillin resistance and provide a solid proof to revert the resistance by reprogramming metabolomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2019.103562DOI Listing

Publication Analysis

Top Keywords

ampicillin resistance
20
edwardsiella piscicida
12
pyruvate cycle
12
depressed cycle
8
cycle contributes
8
contributes acquisition
8
acquisition ampicillin
8
resistance mechanism
8
identifies global
8
global depressed
8

Similar Publications

Purpose: We designed and tested a point of care test panel to detect E.coli and antibiotic susceptibility in urine samples from patients at the point of care in the urological department. The aim of this approach is to facilitate choosing an appropriate antibiotic for urinary tract infections (UTI) at first presentation in the context of increasing antibiotic resistance in uropathogens worldwide.

View Article and Find Full Text PDF

Salmonella enterica is a common foodborne pathogen that causes intestinal illness varying from mild gastroenteritis to life-threatening systemic infections. The frequency of outbreaks due to multidrug-resistant Salmonella has been increased in the past few years with increasing numbers of annual deaths. Therefore, new strategies to control the spread of antimicrobial resistance are required.

View Article and Find Full Text PDF

Background: Otitis media is among the leading causes of illnesses responsible for causing hearing problems and adding significant costs to the public health system. Bacteria are the most common causative agents for otitis media. Currently, there is little information on the prevalence and antimicrobial susceptibility patterns of pathogenic bacterial isolates from patients with otitis media in Ethiopia.

View Article and Find Full Text PDF

The changing epidemiological profile of invasive infections (IIHi) is noted in the post-vaccination era. The aim of this study was to characterize phenotypically and genotypically invasive (Hi) isolates detected in Tunisian pediatric patients. A retrospective study was conducted in the microbiology laboratory of the Children's Hospital of Tunis over ten years (2013-2023).

View Article and Find Full Text PDF

This cross-sectional study assessed the prevalence, bacterial distribution, antimicrobial susceptibility, and potential risk factors associated with subclinical mastitis (SCM) in small-holder dairy herds in Gansu Province, Northwest China. Forty small-holder cow farms were randomly selected from eight cities/counties in six districts of Gansu Province, and a total of = 530 lactating cows were included in this study. SCM prevalence was noted at 38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!