Floods are one of the most devastating types of disasters that cause loss of lives and property worldwide each year. This study aimed to evaluate and compare the prediction capability of the naïve Bayes tree (NBTree), alternating decision tree (ADTree), and random forest (RF) methods for the spatial prediction of flood occurrence in the Quannan area, China. A flood inventory map with 363 flood locations was produced and partitioned into training and validation datasets through random selection with a ratio of 70/30. The spatial flood database was constructed using thirteen flood explanatory factors. The probability certainty factor (PCF) method was used to analyze the correlation between the factors and flood occurrences. Consequently, three flood susceptibility maps were produced using the NBTree, ADTree, and RF methods. Finally, the area under the curve (AUC) and statistical measures were used to validate the flood susceptibility models. The results indicated that the RF method is an efficient and reliable model in flood susceptibility assessment, with the highest AUC values, positive predictive rate, negative predictive rate, sensitivity, specificity, and accuracy for the training (0.951, 0.892, 0.941, 0.945, 0.886, and 0.915, respectively) and validation (0.925, 0.851, 0.938, 0.945, 0.835, and 0.890, respectively) datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134979 | DOI Listing |
Data Brief
February 2025
Department of Earth and Geoenvironmental Sciences, University of Bari, 70125 Bari, Italy.
An open-source geodatabase and its associate WebGIS platform (CONNECTOSED) were developed to collect and utilize data for the Sediment Flow Connectivity Index (SfCI) for the Apulia region of southern Italy. Maps depicting sediment mobility and connectivity across the hydrographic basins of the Apulia region were generated and stored in the geodatabase. This geodatabase is organized into folders containing data in TIFF, shapefile, Jpeg and Pdf formats, including input variables (digital elevation model, land cover map, rainfall map, and soil units dataset for each hydrographic basin), classification graphs (ranking of variable values), dimensionless index maps (slope, ruggedness, rainfall, land cover, and soil stability) and key products (maps of sediment mobility, SfCI, and applied SfCI).
View Article and Find Full Text PDFSci Data
January 2025
University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.
Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing, 100101, China.
Flash flood susceptibility mapping is essential for identifying areas prone to flooding events and aiding decision-makers in formulating effective prevention measures. This study aims to evaluate the flash flood susceptibility in the Yarlung Tsangpo River Basin (YTRB) using multiple machine learning (ML) models facilitated by the H2O automated ML platform. The best-performing model was used to generate a flash flood susceptibility map, and its interpretability was analyzed using the Shapley Additive Explanations (SHAP) tree interpretation method.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, 1 Zhanlanguan Road, Beijing, 100044, China. Electronic address:
Global climate change has significantly increased the frequency and intensity of extreme precipitation events, thereby heightening flood risks for mountainous settlements. However, due to geographical and socio-economic constraints in these regions, flood-related sample data are generally scarce. This study introduces a Mean Filter (MF) grounded in the point-area duality perspective, combined with a feature selection approach utilizing multi-objective optimization algorithms.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Rural Sociology, University of Agriculture, Faisalabad, Pakistan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!