A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous gibberellin A3 exposure from weaning to sexual maturity induces ovarian granulosa cell apoptosis by activating Fas-mediated death receptor signaling pathways and changing methylation patterns on caspase-3 gene promoters. | LitMetric

AI Article Synopsis

  • The study investigates the impact of gibberellic acid (GA3) on ovarian follicle development in female Wistar rats, revealing significant increases in atretic follicle proportions and decreases in corpus luteum proportions after treatment.
  • GA3 exposure also resulted in heightened follicle apoptosis, indicated by increased levels of key apoptotic markers (caspase-3, caspase-8, caspase-9, and Fas) and decreased DNA methyltransferase expression, suggesting disrupted DNA methylation processes.
  • The findings point to GA3-induced apoptosis in ovarian follicles likely being mediated through the Fas apoptotic pathway, with altered DNA methylation potentially contributing to the observed effects.

Article Abstract

Information on the effects of gibberellic acid (gibberellin A3, GA3) on ovarian follicle development is limited. In our present study, 21-day-old female Wistar rats were exposed to GA3 by gavage (25, 50, and 100 mg/kg body weight, once per day) for eight weeks to evaluate the influence of GA3 on ovarian follicle development. After treatment, significant (P < 0.05) increases (to 40.17 % and 44.5 %, respectively) in atretic follicle proportions and significant decreases (to 19.49 % and 17.86 %, respectively) in corpus luteum proportions were observed in the 50 and 100 mg/kg treatment groups compared to the control group. Significant (P < 0.05) increases (to 31.3 % and 42.0 %, respectively) in follicle apoptosis were observed in the 50 and 100 mg/kg treatment groups by transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Significantly increased expression of caspase-3, caspase-8, caspase-9 and Fas was observed by real-time PCR and Western blotting. Bisulfite sequencing PCR (BSP) revealed obviously decreased total methylation percentages of the caspase-3 promoter region in the two treatment groups. Real-time quantitative PCR also showed significantly decreased mRNA expression of DNA methyltransferase (Dnmt) 3a and Dnmt3b. Further in vitro studies showed that a DNA methylation inhibitor could enhance the GA3-induced increase in the mRNA expression of caspase-3. Overall, our present study indicates that GA3 administration from weaning until sexual maturity can affect ovarian follicle development by inducing apoptosis and suggests that signaling through the Fas-mediated apoptotic pathway may be an important underlying mechanism of this apoptosis. In addition, GA3-induced aberrant DNA methylation patterns might be partly responsible for upregulation of caspase-3 gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2019.11.012DOI Listing

Publication Analysis

Top Keywords

ga3 ovarian
8
ovarian follicle
8
follicle development
8
continuous gibberellin
4
gibberellin exposure
4
exposure weaning
4
weaning sexual
4
sexual maturity
4
maturity induces
4
induces ovarian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!